登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
时域有限差分法 FDTD
>
请大家帮我分析一下仿真三维自由空间的结 ..
发帖
回复
1731
阅读
8
回复
[
求助
]
请大家帮我分析一下仿真三维自由空间的结果,让这UPML愁死了
离线
kongruigege
UID :36059
注册:
2009-06-25
登录:
2011-06-20
发帖:
46
等级:
仿真新人
0楼
发表于: 2009-11-22 10:42:17
图片:cuwu.jpg
o1-_BlZ
利用3D-upml 仿真了自由空间,加的激励为高斯脉冲ez(is,js,ks)=ez(is,js,ks)+exp(-((n-45)^2/15^2));
10bv%ZX7
然后我就检测了一下ez(is,js,ks)随时间的变化图,结果是图中所示,不再是高斯脉冲形式
_c}# f\ +_
这样是不是不对啊。 程序师用的下面的那个,基本没改,就是改变了一个激励源。
+AFBTJ
%***********************************************************************
+/" \.wYv
% 3-D FDTD code with UPML absorbing boundary conditions
|.-Muv
%***********************************************************************
*55unc
%
NYzBfL x
% Program author: Keely J. Willis, Graduate Student
/a6i`
% UW Computational Electromagnetics Laboratory
I<+:Ho=6
% Director: Susan C. Hagness
iqN?'8
% Department of Electrical and Computer Engineering
BKgCuz:y
% University of Wisconsin-Madison
QFgKEUNgl
% 1415 Engineering Drive
vTIRydg2b
% Madison, WI 53706-1691
\m:('^\6o
%
kjwillis@wisc.edu
1jaK N*
%
OGG9f??
% Copyright 2005
3.KNAObO
%
4Tb"+Y}
% This MATLAB M-file implements the finite-difference time-domain
wti
% solution of Maxwell's curl equations over a three-dimensional
$\M];S=CY
% Cartesian space lattice comprised of uniform cubic grid cells.
wrsr U
%
i)$<j!L
% The dimensions of the computational domain are 8.2 cm
${gO=Z
% (x-direction), 3.4 cm (y-direction), and 3.2 cm (z-direction).
n9-WZsc1
% The grid is terminated with UPML absorbing boundary conditions.
8NTE`l=>/
%
7<Y aw,G
% An electric current source comprised of two collinear Jz components
/w2-Pgm-[\
% (realizing a Hertzian dipole) excites a radially propagating wave.
4U u`1gtz
% The current source is located in the center of the grid. The
Zq5~M bldh
% source waveform is a differentiated Gaussian pulse given by
S6fbwZZMG
% J(t)=J0*(t-t0)*exp(-(t-t0)^2/tau^2),
=1<v1s|)q
% where tau=50 ps. The FWHM spectral bandwidth of this zero-dc-
QbY@{"" `
% content pulse is approximately 7 GHz. The grid resolution
<Pi#-r.,
% (dx = 2 mm) was chosen to provide at least 10 samples per
fVdu9 l
% wavelength up through 15 GHz.
o^r\7g6\
%
0sB[]E|7[s
% To execute this M-file, type "fdtd3D_UPML" at the MATLAB prompt.
wyXQP+9G
%
Dv&K3^~Rfb
% This code has been tested in the following Matlab environments:
p%K(dA
% Matlab version 6.1.0.450 Release 12.1 (May 18, 2001)
,,BWWFg~
% Matlab version 6.5.1.199709 Release 13 Service Pack 1 (August 4, 2003)
[khXAf1{Q
% Matlab version 7.0.0.19920 R14 (May 6, 2004)
h 9}x6t,
% Matlab version 7.0.1.24704 R14 Service Pack 1 (September 13, 2004)
i?7?I
% Matlab version 7.0.4.365 R14 Service Pack 2 (January 29, 2005)
~qK/w0=j
%
: LT'#Q8
% Note: if you are using Matlab version 6.x, you may wish to make
Aq\K N.
% one or more of the following modifications to this code:
Eh$1piJG
% --uncomment line numbers 485 and 486
Ds#BfP7a
% --comment out line numbers 552 and 561
3Vak C
%
KKWvV4u
%***********************************************************************
b[:{\!I
clear
k|U2Mp
%***********************************************************************
aK7}}
% Fundamental constants
2.MY8}&WBu
%***********************************************************************
Kx?8HA[5
cc=2.99792458e8;
'}"&JO~vPj
muz=4.0*pi*1.0e-7;
{<?8Y
epsz=1.0/(cc*cc*muz);
e^$JGh2
etaz=sqrt(muz/epsz);
8pZ Ogh
%***********************************************************************
;k,@^f8
% Material parameters
'K#ndCGJ$
%***********************************************************************
y*p02\)
mur=1.0;
JV_VM{w{K
epsr=1.0;
c5:X$k\
eta=etaz*sqrt(mur/epsr);
0sTR`Xk
%***********************************************************************
(L(n%
% Grid parameters
Xg*](>/\,
%
8 VhU)fY
% Each grid size variable name describes the number of sampled points
N,3iSH=cN[
% for a particular field component in the direction of that component.
?0?3yD-!9
% Additionally, the variable names indicate the region of the grid
\N$)Q.M
% for which the dimension is relevant. For example, ie_tot is the
E>`|?DE@
% number of sample points of Ex along the x-axis in the total
<1 ;pyw y
% computational grid, and jh_bc is the number of sample points of Hy
NB+/S ;`
% along the y-axis in the y-normal UPML regions.
B&6lG!K'?
%
LWhPd\
%***********************************************************************
!e*T. 1Kz
ie=60; % Size of main grid
<XN=v!2;
je=60;
|=MhI5gsx
ke=60;
G\B+bBz
ih=ie+1;
(t@:dW
jh=je+1;
Q|e-)FS)
kh=ke+1;
FZLx.3k4
upml=10; % Thickness of PML boundaries
a,r B7aD
ih_bc=upml+1;
II!~"-WH
jh_bc=upml+1;
Qkhor-f0
kh_bc=upml+1;
8_"NF%%(n
ie_tot=ie+2*upml; % Size of total computational domain
.t/@d(R
je_tot=je+2*upml;
qI${7
ke_tot=ke+2*upml;
ww #kc!'
ih_tot=ie_tot+1;
mrr~ #Bb>
jh_tot=je_tot+1;
BRM!g9
kh_tot=ke_tot+1;
P+wpX
is=round(ih_tot/2); % Location of z-directed current source
`!AI:c*3p1
js=round(jh_tot/2);
+T8MQ[(4
ks=round(ke_tot/2);
gga}mqMv=
%***********************************************************************
VqxK5
% Fundamental grid parameters
yc`*zLWh
%***********************************************************************
> >KCd
delta=0.002;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\ Ce*5h
dt=delta*sqrt(epsr*mur)/(2.0*cc);
}}D32TVN
nmax=100;
b&dv("e 4
%***********************************************************************
{8oGWQgrj
% Differentiated Gaussian pulse excitation
HrfS^B
%***********************************************************************
OA(.&5]
rtau=50.0e-12;
't5`Ni
tau=rtau/dt;
, 2xv
ndelay=3*tau;
_l"nwEs
J0=1.0*epsz;
=O-irGms*
%***********************************************************************
Z!7xRy
% Initialize field arrays
?~!9\dek,
%***********************************************************************
R<(xWH
ex=zeros(ie_tot,jh_tot,kh_tot);
e<[ ] W4"A
ey=zeros(ih_tot,je_tot,kh_tot);
To5hVL<Ex"
ez=zeros(ih_tot,jh_tot,ke_tot);
v+8Ybq
dx=zeros(ie_tot,jh_tot,kh_tot);
tC5-^5[y
dy=zeros(ih_tot,je_tot,kh_tot);
u05Yy&(f
dz=zeros(ih_tot,jh_tot,ke_tot);
t,IOq[Vtk
hx=zeros(ih_tot,je_tot,ke_tot);
r a>2<
hy=zeros(ie_tot,jh_tot,ke_tot);
PB?2{Cj
hz=zeros(ie_tot,je_tot,kh_tot);
-V;BkE76
bx=zeros(ih_tot,je_tot,ke_tot);
=I@I
by=zeros(ie_tot,jh_tot,ke_tot);
v^vi *c
bz=zeros(ie_tot,je_tot,kh_tot);
=0 !j"z=
%***********************************************************************
aT(_c/t.
% Initialize update coefficient arrays
wy0?*)~
%***********************************************************************
D W^Zuu/)
C1ex=zeros(size(ex));
C/'w
C2ex=zeros(size(ex));
S(?A3 H
C3ex=zeros(size(ex));
VpSpj/\m)'
C4ex=zeros(size(ex));
B?- poB&
C5ex=zeros(size(ex));
G$%F`R[
C6ex=zeros(size(ex));
zn7)>cQ905
C1ey=zeros(size(ey));
A.dbb'^
C2ey=zeros(size(ey));
,?k1if(0[
C3ey=zeros(size(ey));
k~ByICE
C4ey=zeros(size(ey));
C4P<GtR9
C5ey=zeros(size(ey));
T ~(Sc'8
C6ey=zeros(size(ey));
:O$bsw:3w<
C1ez=zeros(size(ez));
RHMXPsj
C2ez=zeros(size(ez));
RjVmHhX
C3ez=zeros(size(ez));
X2rKH$<g
C4ez=zeros(size(ez));
o:fe`#t
C5ez=zeros(size(ez));
[.1MElM
C6ez=zeros(size(ez));
;i'[c`
D1hx=zeros(size(hx));
[/%N2mj
D2hx=zeros(size(hx));
G\TO]c
D3hx=zeros(size(hx));
[~ 2imS
D4hx=zeros(size(hx));
j49Uj}:j
D5hx=zeros(size(hx));
d7 H *F
D6hx=zeros(size(hx));
/XEW]/4
D1hy=zeros(size(hy));
x3Y)l1gh
D2hy=zeros(size(hy));
-Ou.C7ol
D3hy=zeros(size(hy));
kS:#|yY8%
D4hy=zeros(size(hy));
Dfa3#{
D5hy=zeros(size(hy));
c38XM]Jeq
D6hy=zeros(size(hy));
]z/R?SM
D1hz=zeros(size(hz));
stBe ^C
D2hz=zeros(size(hz));
lg~7[=%k#
D3hz=zeros(size(hz));
G{E`5KIvm
D4hz=zeros(size(hz));
v{fcQb
D5hz=zeros(size(hz));
2wHbhW[
D6hz=zeros(size(hz));
X<P <-e9
%***********************************************************************
UL{J%Ze=~
% Update coefficients, as described in Section 7.8.2.
|E.BGdS
%
\r[u>7I
% In order to simplify the update equations used in the time-stepping
F_jHi0A
% loop, we implement UPML update equations throughout the entire
AyOibnoZ2E
% grid. In the main grid, the electric-field update coefficients of
$2L6:&.P,
% Equations 7.91a-f and the correponding magnetic field update
1{ %y(?`
% coefficients extracted from Equations 7.89 and 7.90 are simplified
3m`>D e
% for the main grid (free space) and calculated below.
,<r&] eC
%
)AQ^PBwp
%***********************************************************************
DQm%=ON7
C1=1.0;
c$%*p (zY
C2=dt;
9S*"={}%
C3=1.0;
$[n:IDa*@1
C4=1.0/2.0/epsr/epsr/epsz/epsz;
*{!Y_FrL
C5=2.0*epsr*epsz;
OmO#} k<
C6=2.0*epsr*epsz;
(rkg0
D1=1.0;
I4{xQI
D2=dt;
~~Ezt*lH
D3=1.0;
HOF$(86zqA
D4=1.0/2.0/epsr/epsz/mur/muz;
y{>f^S<
D5=2.0*epsr*epsz;
Jt@lH
D6=2.0*epsr*epsz;
#c>GjUJ.w
%***********************************************************************
W%-XN
% Initialize main grid update coefficients
Xa?O)Bq.
%***********************************************************************
|f#hGk6
C1ex(:,jh_bc:jh_tot-upml,:)=C1;
PD-&(ka.
C2ex(:,jh_bc:jh_tot-upml,:)=C2;
hN &?x5aC>
C3ex(:,:,kh_bc:kh_tot-upml)=C3;
a[(OeVQ5
C4ex(:,:,kh_bc:kh_tot-upml)=C4;
*_o(~5w-K
C5ex(ih_bc:ie_tot-upml,:,:)=C5;
.'gm2
C6ex(ih_bc:ie_tot-upml,:,:)=C6;
I}3F'}JV<
C1ey(:,:,kh_bc:kh_tot-upml)=C1;
)J}v.8
C2ey(:,:,kh_bc:kh_tot-upml)=C2;
e12QYoh
C3ey(ih_bc:ih_tot-upml,:,:)=C3;
UI+6\ 3
C4ey(ih_bc:ih_tot-upml,:,:)=C4;
'#Au~5
C5ey(:,jh_bc:je_tot-upml,:)=C5;
g-~ _gt7
C6ey(:,jh_bc:je_tot-upml,:)=C6;
bYnq,JRA
C1ez(ih_bc:ih_tot-upml,:,:)=C1;
D5D *$IC
C2ez(ih_bc:ih_tot-upml,:,:)=C2;
.Dr!\.hL
C3ez(:,jh_bc:jh_tot-upml,:)=C3;
c{BAQZVc
C4ez(:,jh_bc:jh_tot-upml,:)=C4;
7MLLx#U
C5ez(:,:,kh_bc:ke_tot-upml)=C5;
"J 1A9|
C6ez(:,:,kh_bc:ke_tot-upml)=C6;
a3tcLd|7J
D1hx(:,jh_bc:je_tot-upml,:)=D1;
7RL J
D2hx(:,jh_bc:je_tot-upml,:)=D2;
2!Dz9m3
D3hx(:,:,kh_bc:ke_tot-upml)=D3;
-HG.GA
D4hx(:,:,kh_bc:ke_tot-upml)=D4;
VTM* 1uXS>
D5hx(ih_bc:ih_tot-upml,:,:)=D5;
_9 ]:0bDUo
D6hx(ih_bc:ih_tot-upml,:,:)=D6;
7GYf#} N
D1hy(:,:,kh_bc:ke_tot-upml)=D1;
j)?M
D2hy(:,:,kh_bc:ke_tot-upml)=D2;
\}s/<Q
D3hy(ih_bc:ie_tot-upml,:,:)=D3;
% D
D4hy(ih_bc:ie_tot-upml,:,:)=D4;
Wye* ~t
D5hy(:,jh_bc:jh_tot-upml,:)=D5;
Pc`d]*BYi
D6hy(:,jh_bc:jh_tot-upml,:)=D6;
pOc2V
D1hz(ih_bc:ie_tot-upml,:,:)=D1;
SG&,o=I$
D2hz(ih_bc:ie_tot-upml,:,:)=D2;
QLWnP-
D3hz(:,jh_bc:je_tot-upml,:)=D3;
|Ev|A9J!
D4hz(:,jh_bc:je_tot-upml,:)=D4;
zVq!M-e
D5hz(:,:,kh_bc:kh_tot-upml)=D5;
Pwl*5/l
D6hz(:,:,kh_bc:kh_tot-upml)=D6;
yu6{ 6[
%***********************************************************************
qTr P@F4`g
% Fill in PML regions
30!DraW8
%
FklR!*oL,)
% PML theory describes a continuous grading of the material properties
yx :^*/
% over the PML region. In the FDTD grid it is necessary to discretize
vSH,fS-n
% the grading by averaging the material properties over a grid cell
8(L$a1#5W
% width centered on each field component. As an example of the
Z~~6y6p
% implementation of this averaging, we take the integral of the
}kqh[`:
% continuous sigma(x) in the PML region
oLT#'42+H
%
,X4+i8Yc
% sigma_i = integral(sigma(x))/delta
.d]/:T -0
%
W2 -%/
% where the integral is over a single grid cell width in x, and is
6]?mjG6
% bounded by x1 and x2. Applying this to the polynomial grading of
oS fr5 i
% Equation 7.60a produces
%N*[{j= ^
%
(Xh<F
% sigma_i = (x2^(m+1)-x1^(m+1))*sigmam/(delta*(m+1)*d^m)
c$Kc,`2m7
%
sFTAE1|
% where sigmam is the maximum value of sigma as described by Equation
S\g9@g.
% 7.62.
WiS3W;
%
lFjz*g2'
% The definitions of x1 and x2 depend on the position of the field
7~e,"^>T
% component within the grid cell. We have either
OlOOg
%
4,I,f>V
% x1 = (i-0.5)*delta, x2 = (i+0.5)*delta
\9)5b8
%
XB7Aa)
% or
^v'kEsE^*
%
k&ci5MpN
% x1 = (i)*delta, x2 = (i+1)*delta
_x,X0ncv]@
%
ny5P*yWEh
% where i varies over the PML region.
.h-mFcjy
%
]#)(D-i
%***********************************************************************
ga5Q
rmax=exp(-16); %desired reflection error, designated as R(0) in Equation 7.62
@:C)^f"
orderbc=4; %order of the polynomial grading, designated as m in Equation 7.60a,b
}qn>#ETi
% x-varying material properties
4>*=q*<V5E
delbc=upml*delta;
Zv;nY7B
sigmam=-log(rmax)*(orderbc+1.0)/(2.0*eta*delbc);
M:/NW-:
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1.0));
79v +ze
kmax=1;
&<VU}c^!
kfactor=(kmax-1.0)/delta/(orderbc+1.0)/delbc^orderbc;
s6,~JF^
for i=1:upml
{dpC;jsW1
N PT-d
% Coefficients for field components in the center of the grid cell
.\R9tt}
x1=(upml-i+1)*delta;
HAxLYun(3w
x2=(upml-i)*delta;
'~D4%WKT
sigma=sigfactor*(x1^(orderbc+1)-x2^(orderbc+1));
`Nx@MPo
ki=1+kfactor*(x1^(orderbc+1)-x2^(orderbc+1));
P%aqY~yF3
facm=(2*epsr*epsz*ki-sigma*dt);
Kjd3!%4mB
facp=(2*epsr*epsz*ki+sigma*dt);
i%K6<1R;y{
C5ex(i,:,:)=facp;
_QL|pLf-
C5ex(ie_tot-i+1,:,:)=facp;
:?6HG_9X
C6ex(i,:,:)=facm;
fEHFlgN3Ap
C6ex(ie_tot-i+1,:,:)=facm;
>G6kF!V
D1hz(i,:,:)=facm/facp;
K%v:giN$l`
D1hz(ie_tot-i+1,:,:)=facm/facp;
D&%8JL
D2hz(i,:,:)=2.0*epsr*epsz*dt/facp;
GY%9V5GB
D2hz(ie_tot-i+1,:,:)=2.0*epsr*epsz*dt/facp;
_z@/~M(
D3hy(i,:,:)=facm/facp;
NfV|c~?d
D3hy(ie_tot-i+1,:,:)=facm/facp;
TEz;:* ,CG
D4hy(i,:,:)=1.0/facp/mur/muz;
{N4 'g_
D4hy(ie_tot-i+1,:,:)=1.0/facp/mur/muz;
23gN;eD+m6
% Coefficients for field components on the grid cell boundary
P0l fK}
x1=(upml-i+1.5)*delta;
qVC+q8
x2=(upml-i+0.5)*delta;
~T_|?lU`R
sigma=sigfactor*(x1^(orderbc+1)-x2^(orderbc+1));
[ohLG_9
ki=1.0+kfactor*(x1^(orderbc+1)-x2^(orderbc+1));
l=CAr
facm=(2.0*epsr*epsz*ki-sigma*dt);
r1L@p[>
facp=(2.0*epsr*epsz*ki+sigma*dt);
r%U6,7d=)
C1ez(i,:,:)=facm/facp;
T+Z[&|
C1ez(ih_tot-i+1,:,:)=facm/facp;
%R0 Wq4}
C2ez(i,:,:)=2.0*epsr*epsz*dt/facp;
@]l|-xGCWn
C2ez(ih_tot-i+1,:,:)=2.0*epsr*epsz*dt/facp;
Hd~g\
C3ey(i,:,:)=facm/facp;
u#76w74
C3ey(ih_tot-i+1,:,:)=facm/facp;
t*IePz] /
C4ey(i,:,:)=1.0/facp/epsr/epsz;
q<&1,^A
C4ey(ih_tot-i+1,:,:)=1.0/facp/epsr/epsz;
wQ+pVu?6_
D5hx(i,:,:)=facp;
{A0jkU
D5hx(ih_tot-i+1,:,:)=facp;
fDy*dp4z
D6hx(i,:,:)=facm;
|Ea%nghl
D6hx(ih_tot-i+1,:,:)=facm;
d&+]@ Ii
qLEYBv-3
end
QLY;@-jF$
% PEC walls
^Arv6kD,
C1ez(1,:,:)=-1.0;
Nny*C`uDF
C1ez(ih_tot,:,:)=-1.0;
FK^xZ?G
C2ez(1,:,:)=0.0;
*9\j1Nd
C2ez(ih_tot,:,:)=0.0;
Cn~VJ,l g
C3ey(1,:,:)=-1.0;
@xWWN
C3ey(ih_tot,:,:)=-1.0;
@_ %RQO_X
C4ey(1,:,:)=0.0;
?'> .>
C4ey(ih_tot,:,:)=0.0;
[c,V=:Cq
% y-varying material properties
A9xeOy8e
delbc=upml*delta;
MQoA\
sigmam=-log(rmax)*epsr*epsz*cc*(orderbc+1.0)/(2.0*delbc);
m_)-
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1.0));
YV.' L
kmax=1.0;
d$$5&a
kfactor=(kmax-1.0)/delta/(orderbc+1.0)/delbc^orderbc;
`UsJaoR#f
for j=1:upml
jIs>>
7{m>W!
% Coefficients for field components in the center of the grid cell
2;v:Z^&
y1=(upml-j+1)*delta;
D6bYg `
y2=(upml-j)*delta;
'nTlCYT
sigma=sigfactor*(y1^(orderbc+1)-y2^(orderbc+1));
z!g$#hmL>
ki=1+kfactor*(y1^(orderbc+1)-y2^(orderbc+1));
w6vbYPCN
facm=(2*epsr*epsz*ki-sigma*dt);
/e2zH
facp=(2*epsr*epsz*ki+sigma*dt);
w-K A~
]?y~;-^
C5ey(:,j,:)=facp;
1-y8Hy_a2
C5ey(:,je_tot-j+1,:)=facp;
rCPIz<
C6ey(:,j,:)=facm;
dA)T>
C6ey(:,je_tot-j+1,:)=facm;
wH~A> 4*(
D1hx(:,j,:)=facm/facp;
?X|)0o
D1hx(:,je_tot-j+1,:)=facm/facp;
]Y[N=G
D2hx(:,j,:)=2*epsr*epsz*dt/facp;
##jJaSxG
D2hx(:,je_tot-j+1,:)=2*epsr*epsz*dt/facp;
2IB{FO/
D3hz(:,j,:)=facm/facp;
xuXPVJdi
D3hz(:,je_tot-j+1,:)=facm/facp;
(<Cq_Kw
D4hz(:,j,:)=1/facp/mur/muz;
!n-Sh<8
D4hz(:,je_tot-j+1,:)=1/facp/mur/muz;
j\ y!
]o] VS
% Coefficients for field components on the grid cell boundary
vb>F)X?b_
y1=(upml-j+1.5)*delta;
v9f+ {Y%-
y2=(upml-j+0.5)*delta;
+=($mcw#[
sigma=sigfactor*(y1^(orderbc+1)-y2^(orderbc+1));
s5*4<VxQN.
ki=1+kfactor*(y1^(orderbc+1)-y2^(orderbc+1));
'[$KG
facm=(2*epsr*epsz*ki-sigma*dt);
)g@+ MR
facp=(2*epsr*epsz*ki+sigma*dt);
@[r[l#4yUi
BN 9e S
C1ex(:,j,:)=facm/facp;
7KIekL
C1ex(:,jh_tot-j+1,:)=facm/facp;
#*iUZo
C2ex(:,j,:)=2*epsr*epsz*dt/facp;
c(Dp`f,
C2ex(:,jh_tot-j+1,:)=2*epsr*epsz*dt/facp;
Bp^LLH
C3ez(:,j,:)=facm/facp;
v'hc-Q9+>
C3ez(:,jh_tot-j+1,:)=facm/facp;
VIF43/>(
C4ez(:,j,:)=1/facp/epsr/epsz;
;%n'k
C4ez(:,jh_tot-j+1,:)=1/facp/epsr/epsz;
FyEKqYl
D5hy(:,j,:)=facp;
h@ lz
D5hy(:,jh_tot-j+1,:)=facp;
yj:@Fg-3g
D6hy(:,j,:)=facm;
YS|Dw'%g /
D6hy(:,jh_tot-j+1,:)=facm;
&~_F2]oM
end
Mq0MtC6-
% PEC walls
u> {aF{
C1ex(:,1,:)=-1;
_[6sr7H!
C1ex(:,jh_tot,:)=-1;
0|AgmW_7 .
C2ex(:,1,:)=0;
E)*ht;u
C2ex(:,jh_tot,:)=0;
l[E^nh>
C3ez(:,1,:)=-1;
01mu6)
C3ez(:,jh_tot,:)=-1;
fu!T4{2
C4ez(:,1,:)=0;
}b2YX+/e$f
C4ez(:,jh_tot,:)=0;
Jqxd92 bI
% z-varying material properties
Biv)s@"f-Q
delbc=upml*delta;
\TP$2i%W
sigmam=-log(rmax)*epsr*epsz*cc*(orderbc+1)/(2*delbc);
9`f@"%h
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1));
pT,8E(*l2
kmax=1;
`3\aX|4@
kfactor=(kmax-1)/delta/(orderbc+1)/delbc^orderbc;
_#{ *I(l
for k=1:upml
kK75 (x
% Coefficients for field components in the center of the grid cell
ys`-QlkB
z1=(upml-k+1)*delta;
n-9xfn0U~#
z2=(upml-k)*delta;
[<XYU,{R
sigma=sigfactor*(z1^(orderbc+1)-z2^(orderbc+1));
HT.,BF
ki=1+kfactor*(z1^(orderbc+1)-z2^(orderbc+1));
sa.H,<;
facm=(2*epsr*epsz*ki-sigma*dt);
do8[wej<:
facp=(2*epsr*epsz*ki+sigma*dt);
}TTghE!
O\<zQ2m
C5ez(:,:,k)=facp;
cSPQ NYU:
C5ez(:,:,ke_tot-k+1)=facp;
y.Z_\@
C6ez(:,:,k)=facm;
3q%z
C6ez(:,:,ke_tot-k+1)=facm;
Q/|.=:~FO
D1hy(:,:,k)=facm/facp;
9QU\J0c/
D1hy(:,:,ke_tot-k+1)=facm/facp;
z6`0Uv~
D2hy(:,:,k)=2*epsr*epsz*dt/facp;
F3bTFFt
D2hy(:,:,ke_tot-k+1)=2*epsr*epsz*dt/facp;
m7k }k)
D3hx(:,:,k)=facm/facp;
9^/Y7Wp/@
D3hx(:,:,ke_tot-k+1)=facm/facp;
fw&*;az
D4hx(:,:,k)=1/facp/mur/muz;
Z1fY' f
D4hx(:,:,ke_tot-k+1)=1/facp/mur/muz;
9dNB_
Wc@ ,#v
% Coefficients for field components on the grid cell boundary
7T/BzXr,B
z1=(upml-k+1.5)*delta;
b+~_/;Y9
z2=(upml-k+0.5)*delta;
~xqiasE#K
sigma=sigfactor*(z1^(orderbc+1)-z2^(orderbc+1));
qm=U<'b^
ki=1+kfactor*(z1^(orderbc+1)-z2^(orderbc+1));
Oi\ s
facm=(2*epsr*epsz*ki-sigma*dt);
KS*,'hvY
facp=(2*epsr*epsz*ki+sigma*dt);
vEI{AmogRx
W` x.qumN
C1ey(:,:,k)=facm/facp;
|^1g*fy?
C1ey(:,:,kh_tot-k+1)=facm/facp;
]Za[]E8MD
C2ey(:,:,k)=2*epsr*epsz*dt/facp;
dfFw6R
C2ey(:,:,kh_tot-k+1)=2*epsr*epsz*dt/facp;
zQ+Mu^|u+
C3ex(:,:,k)=facm/facp;
jRg/N_2'2
C3ex(:,:,kh_tot-k+1)=facm/facp;
cX9o'e:C
C4ex(:,:,k)=1/facp/epsr/epsz;
y]Nk^ga:U6
C4ex(:,:,kh_tot-k+1)=1/facp/epsr/epsz;
qt L]x - O
D5hz(:,:,k)=facp;
N}#Rw2Vl
D5hz(:,:,kh_tot-k+1)=facp;
y,:WLk~
D6hz(:,:,k)=facm;
1'f_C<.0
D6hz(:,:,kh_tot-k+1)=facm;
uX-^9t
end
)%^l+w+&
% PEC walls
=w3A{h"^
C1ey(:,:,1)=-1;
RI*n]HNgy+
C1ey(:,:,kh_tot)=-1;
=AO (
C2ey(:,:,1)=0;
6Amt75RY
C2ey(:,:,kh_tot)=0;
f&CQn.K"
C3ex(:,:,1)=-1;
\ ITd\)F%N
C3ex(:,:,kh_tot)=-1;
1%_RXQVG
C4ex(:,:,1)=0;
>5t! Xt
C4ex(:,:,kh_tot)=0;
!yv>e7g^
%figure
AFi_P\X
%set(gcf,'DoubleBuffer','on')
4$iS@o|
%***********************************************************************
=DdPwr 0Op
% Begin time stepping loop
@XJ7ff&
%***********************************************************************
d92Z;FWb
d0=zeros(1,nmax);d1=zeros(1,nmax);d2=zeros(1,nmax);
W.^zN' a
for n=1:nmax
VJ\qp%
K+)3 LR^
% Update magnetic field
~u%$ 9IhM
bstore=bx;
l73% y
bx(2:ie_tot,:,:)=D1hx(2:ie_tot,:,:).* bx(2:ie_tot,:,:)-...
B .y}S
D2hx(2:ie_tot,:,:).*((ez(2:ie_tot,2:jh_tot,:)-ez(2:ie_tot,1:je_tot,:))-...
@aQ:3/
(ey(2:ie_tot,:,2:kh_tot)-ey(2:ie_tot,:,1:ke_tot)))./delta;
4w+AOWjd
hx(2:ie_tot,:,:)= D3hx(2:ie_tot,:,:).*hx(2:ie_tot,:,:)+...
[7}3k?42X
D4hx(2:ie_tot,:,:).*(D5hx(2:ie_tot,:,:).*bx(2:ie_tot,:,:)-...
e :HORc~U
D6hx(2:ie_tot,:,:).*bstore(2:ie_tot,:,:));
}.o.*N
bstore=by;
zr!7*, p
by(:,2:je_tot,:)=D1hy(:,2:je_tot,:).* by(:,2:je_tot,:)-...
rN9qH
D2hy(:,2:je_tot,:).*((ex(:,2:je_tot,2:kh_tot)-ex(:,2:je_tot,1:ke_tot))-...
9D14/9*(dU
(ez(2:ih_tot,2:je_tot,:)-ez(1:ie_tot,2:je_tot,:)))./delta;
YC1Bgz
hy(:,2:je_tot,:)= D3hy(:,2:je_tot,:).*hy(:,2:je_tot,:)+...
_.9 5>`
D4hy(:,2:je_tot,:).*(D5hy(:,2:je_tot,:).*by(:,2:je_tot,:)-...
U,!qNi}
D6hy(:,2:je_tot,:).*bstore(:,2:je_tot,:));
j4;^5 Dy^
bstore=bz;
g(pr.Dw6
bz(:,:,2:ke_tot)=D1hz(:,:,2:ke_tot).* bz(:,:,2:ke_tot)-...
dU9;sx
D2hz(:,:,2:ke_tot).*((ey(2:ih_tot,:,2:ke_tot)-ey(1:ie_tot,:,2:ke_tot))-...
9`Qa/Y!
(ex(:,2:jh_tot,2:ke_tot)-ex(:,1:je_tot,2:ke_tot)))./delta;
CcUF)$kz
hz(:,:,2:ke_tot)= D3hz(:,:,2:ke_tot).*hz(:,:,2:ke_tot)+...
s?HK2b^;D
D4hz(:,:,2:ke_tot).*(D5hz(:,:,2:ke_tot).*bz(:,:,2:ke_tot)-...
E n7~wKF
D6hz(:,:,2:ke_tot).*bstore(:,:,2:ke_tot));
GTLS0l)
.F,l>wUNe
% Update electric field
Tw';;euw
dstore=dx;
XncX2E4E
dx(:,2:je_tot,2:ke_tot)=C1ex(:,2:je_tot,2:ke_tot).* dx(:,2:je_tot,2:ke_tot)+...
deAV:c
C2ex(:,2:je_tot,2:ke_tot).*((hz(:,2:je_tot,2:ke_tot)-hz(:,1:je_tot-1,2:ke_tot))-...
X|\`\[
(hy(:,2:je_tot,2:ke_tot)-hy(:,2:je_tot,1:ke_tot-1)))./delta;
c>$d!IKCL
ex(:,2:je_tot,2:ke_tot)=C3ex(:,2:je_tot,2:ke_tot).*ex(:,2:je_tot,2:ke_tot)+...
(m'-1wX.
C4ex(:,2:je_tot,2:ke_tot).*(C5ex(:,2:je_tot,2:ke_tot).*dx(:,2:je_tot,2:ke_tot)-...
x\'3UKQP+^
C6ex(:,2:je_tot,2:ke_tot).*dstore(:,2:je_tot,2:ke_tot));
_".h(
dstore=dy;
AZ(zM.y!#_
dy(2:ie_tot,:,2:ke_tot)=C1ey(2:ie_tot,:,2:ke_tot).* dy(2:ie_tot,:,2:ke_tot)+...
wn@~80)$
C2ey(2:ie_tot,:,2:ke_tot).*((hx(2:ie_tot,:,2:ke_tot)-hx(2:ie_tot,:,1:ke_tot-1))-...
6?u`u t
(hz(2:ie_tot,:,2:ke_tot)-hz(1:ie_tot-1,:,2:ke_tot)))./delta;
ou-#+Sdd
ey(2:ie_tot,:,2:ke_tot)=C3ey(2:ie_tot,:,2:ke_tot).*ey(2:ie_tot,:,2:ke_tot)+...
Z7bJ<TpZ
C4ey(2:ie_tot,:,2:ke_tot).*(C5ey(2:ie_tot,:,2:ke_tot).*dy(2:ie_tot,:,2:ke_tot)-...
Fj`k3~tUw
C6ey(2:ie_tot,:,2:ke_tot).*dstore(2:ie_tot,:,2:ke_tot));
s'yR2JYv
dstore=dz;
`<g]p-=":
dz(2:ie_tot,2:je_tot,:)=C1ez(2:ie_tot,2:je_tot,:).* dz(2:ie_tot,2:je_tot,:)+...
XMS:F]HN
C2ez(2:ie_tot,2:je_to ..
rQl9SUs
)(,O~w
未注册仅能浏览
部分内容
,查看
全部内容及附件
请先
登录
或
注册
共
条评分
离线
kongruigege
UID :36059
注册:
2009-06-25
登录:
2011-06-20
发帖:
46
等级:
仿真新人
1楼
发表于: 2009-11-22 13:46:54
哎,连个回答俺的也没有
^oav-R&
共
条评分
离线
lx84
呵呵
UID :30566
注册:
2009-04-22
登录:
2020-09-16
发帖:
866
等级:
积极交流六级
2楼
发表于: 2009-11-22 19:07:49
这个程序我调过,没问题的。这个加的是软源,Ez分量是上一步的值和高斯脉冲叠加的结果
共
条评分
继续!
离线
richardstl
UID :32014
注册:
2009-05-09
登录:
2010-06-08
发帖:
20
等级:
仿真新人
3楼
发表于: 2009-11-22 20:13:13
高手们都说说
+kd1q
共
条评分
离线
kongruigege
UID :36059
注册:
2009-06-25
登录:
2011-06-20
发帖:
46
等级:
仿真新人
4楼
发表于: 2009-11-22 20:21:26
好的,谢谢啊,可让俺放心了
共
条评分
离线
babobee
UID :22979
注册:
2008-12-11
登录:
2012-05-31
发帖:
88
等级:
仿真一级
5楼
发表于: 2009-12-06 18:51:00
这个图应该是高斯脉冲的形式 但你的不是
)aGSZ1`/
检查一下你的空间步长设定是不是太短了 也可以适当的增加时间步 让程序多迭代一些时间步 看看有没有什么变化
共
1
条评分
gwzhao
技术分
+1
积极参与讨论+技术分 论坛感谢您的参与
2009-12-07
离线
464459511
UID :9635
注册:
2008-03-19
登录:
2011-04-11
发帖:
68
等级:
仿真一级
6楼
发表于: 2009-12-14 10:45:05
同意5楼的看法,可能是时间步长太小了,不过如果增大时间步长的间隔有可能会发散,造成不稳定,所以妥帖的办法是增大时间步数。
共
条评分
离线
cem-uestc
UID :9061
注册:
2008-03-07
登录:
2019-01-05
发帖:
2575
等级:
荣誉管理员
7楼
发表于: 2010-03-02 09:45:13
其实这个结果是对了
4c< s"2F
原因解释如下:
uem-fTG
你采用的一般高斯源,它主要能量集中在低频,即直流分量很大,观察曲线后面部分是直线,是直流源的影响,相当于在观察处的静场值。
共
条评分
欢迎光临
http://www.mwtee.com/home.php?mod=space&uid=13535
离线
cem-uestc
UID :9061
注册:
2008-03-07
登录:
2019-01-05
发帖:
2575
等级:
荣誉管理员
8楼
发表于: 2010-03-02 09:46:16
如果采用一阶以上的Gauss源或调制高斯源,就没有直流分量,仿真出来没有这个现象
共
条评分
欢迎光临
http://www.mwtee.com/home.php?mod=space&uid=13535
发帖
回复