登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
时域有限差分法 FDTD
>
请大家帮我分析一下仿真三维自由空间的结 ..
发帖
回复
1730
阅读
8
回复
[
求助
]
请大家帮我分析一下仿真三维自由空间的结果,让这UPML愁死了
离线
kongruigege
UID :36059
注册:
2009-06-25
登录:
2011-06-20
发帖:
46
等级:
仿真新人
0楼
发表于: 2009-11-22 10:42:17
图片:cuwu.jpg
0gn@h/F2%
利用3D-upml 仿真了自由空间,加的激励为高斯脉冲ez(is,js,ks)=ez(is,js,ks)+exp(-((n-45)^2/15^2));
) ){xlFA}
然后我就检测了一下ez(is,js,ks)随时间的变化图,结果是图中所示,不再是高斯脉冲形式
sIl33kmv
这样是不是不对啊。 程序师用的下面的那个,基本没改,就是改变了一个激励源。
6UE(f@
%***********************************************************************
-[Qvg49jy
% 3-D FDTD code with UPML absorbing boundary conditions
PjIeZ&p
%***********************************************************************
ZCg`z
%
sgr=w+",Q
% Program author: Keely J. Willis, Graduate Student
3},Zlu
% UW Computational Electromagnetics Laboratory
2 /y}a#s
% Director: Susan C. Hagness
I=Oy-
% Department of Electrical and Computer Engineering
pAu72O?
% University of Wisconsin-Madison
^MmC$U^n
% 1415 Engineering Drive
)=Q)BN[
% Madison, WI 53706-1691
0~ &"
%
kjwillis@wisc.edu
m ga6[E<
%
e0;
% Copyright 2005
%o}(sShS
%
=_[Z W
% This MATLAB M-file implements the finite-difference time-domain
{FI\~q
% solution of Maxwell's curl equations over a three-dimensional
w18RA#Zo/
% Cartesian space lattice comprised of uniform cubic grid cells.
|7^^*UzSK:
%
z\/53Sy<
% The dimensions of the computational domain are 8.2 cm
R1-k3;v^
% (x-direction), 3.4 cm (y-direction), and 3.2 cm (z-direction).
X[W]=yJJ
% The grid is terminated with UPML absorbing boundary conditions.
Lz\UZeq
%
K"2|[ 5
% An electric current source comprised of two collinear Jz components
-K[782Q
% (realizing a Hertzian dipole) excites a radially propagating wave.
?_`0G/xl
% The current source is located in the center of the grid. The
!?[oIQ)h
% source waveform is a differentiated Gaussian pulse given by
~B$b)`*
% J(t)=J0*(t-t0)*exp(-(t-t0)^2/tau^2),
fB+b}aoV
% where tau=50 ps. The FWHM spectral bandwidth of this zero-dc-
!eJCM`cp
% content pulse is approximately 7 GHz. The grid resolution
7);:ZpDv%L
% (dx = 2 mm) was chosen to provide at least 10 samples per
D^Ys)- d
% wavelength up through 15 GHz.
lr2rQo>
%
f'6|OsVQ
% To execute this M-file, type "fdtd3D_UPML" at the MATLAB prompt.
s^T+5E&}
%
y)F!c29
% This code has been tested in the following Matlab environments:
t?^9HP1b_
% Matlab version 6.1.0.450 Release 12.1 (May 18, 2001)
Fpt-V
% Matlab version 6.5.1.199709 Release 13 Service Pack 1 (August 4, 2003)
9B+wYJp
% Matlab version 7.0.0.19920 R14 (May 6, 2004)
uvA(Rn
% Matlab version 7.0.1.24704 R14 Service Pack 1 (September 13, 2004)
=raA?Bp3;(
% Matlab version 7.0.4.365 R14 Service Pack 2 (January 29, 2005)
:ZxLJK9x1
%
oY`qI nM_
% Note: if you are using Matlab version 6.x, you may wish to make
A.Bk/N1G
% one or more of the following modifications to this code:
Bfd-:`Jk
% --uncomment line numbers 485 and 486
}xlKonk
% --comment out line numbers 552 and 561
hFvi5I-b
%
xiyxrR;
%***********************************************************************
r?l;I3~
clear
H0*5_OJ!i
%***********************************************************************
~@8+hnE]
% Fundamental constants
o7+>G~i
%***********************************************************************
K<v:-TjQZ:
cc=2.99792458e8;
1'G8o=~
muz=4.0*pi*1.0e-7;
P.sgRsL
epsz=1.0/(cc*cc*muz);
J`#`fX
etaz=sqrt(muz/epsz);
x:t<ZG&Xwg
%***********************************************************************
s T3p>8n
% Material parameters
0W>9'Rw
%***********************************************************************
NfE.N&vI_c
mur=1.0;
&2EBk= X
epsr=1.0;
%McO6.M@
eta=etaz*sqrt(mur/epsr);
Pj7gGf6v
%***********************************************************************
B(l-}|m_
% Grid parameters
5eX59:vtl
%
cbKL$|
% Each grid size variable name describes the number of sampled points
!5x Ly6=}
% for a particular field component in the direction of that component.
["3df>!f
% Additionally, the variable names indicate the region of the grid
Poa?Ej
% for which the dimension is relevant. For example, ie_tot is the
Qrz4}0
% number of sample points of Ex along the x-axis in the total
J -Qh/d%]
% computational grid, and jh_bc is the number of sample points of Hy
)'q%2%Ak
% along the y-axis in the y-normal UPML regions.
xfSG~csoz
%
!k~z5z'=py
%***********************************************************************
gY`Nr!O
ie=60; % Size of main grid
zL s^,x
je=60;
!;>(ie\
ke=60;
a%hGZCI
ih=ie+1;
@XOi62(
jh=je+1;
]Qi,j#X
kh=ke+1;
>kdM:MK
upml=10; % Thickness of PML boundaries
wVi%oSfM
ih_bc=upml+1;
s0{ NsK>
jh_bc=upml+1;
z^sST
kh_bc=upml+1;
9u wL{P&
ie_tot=ie+2*upml; % Size of total computational domain
v5T9Y-{`
je_tot=je+2*upml;
oVZ4bRl
ke_tot=ke+2*upml;
.#^0pv!
ih_tot=ie_tot+1;
b"8FlZ$
jh_tot=je_tot+1;
1a9w(X
kh_tot=ke_tot+1;
gZ(O)uzv
is=round(ih_tot/2); % Location of z-directed current source
-Gsl[Rc0H;
js=round(jh_tot/2);
Nm8w/Q5D`
ks=round(ke_tot/2);
Q:S\0cI0
%***********************************************************************
h'^FrWaU/
% Fundamental grid parameters
015Owi
%***********************************************************************
@~jxG%y86
delta=0.002;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
^i<}]c_|f
dt=delta*sqrt(epsr*mur)/(2.0*cc);
=LZ>su
nmax=100;
7tH]*T9e>
%***********************************************************************
J(d2:V{h
% Differentiated Gaussian pulse excitation
I{dl% z73
%***********************************************************************
j$eCe<.3
rtau=50.0e-12;
2 X<nn
tau=rtau/dt;
L2Ux9_S
ndelay=3*tau;
W._G0b4}
J0=1.0*epsz;
~HP LV
%***********************************************************************
K="I<bK
% Initialize field arrays
]Sta]}VQ
%***********************************************************************
w)S; J,Hv
ex=zeros(ie_tot,jh_tot,kh_tot);
_1JmjIH)M
ey=zeros(ih_tot,je_tot,kh_tot);
I^fPk
ez=zeros(ih_tot,jh_tot,ke_tot);
~4s-S3YzaM
dx=zeros(ie_tot,jh_tot,kh_tot);
oA3d^%(c
dy=zeros(ih_tot,je_tot,kh_tot);
'\*A"8;h
dz=zeros(ih_tot,jh_tot,ke_tot);
GhnE>d;i
hx=zeros(ih_tot,je_tot,ke_tot);
=|y|P80w
hy=zeros(ie_tot,jh_tot,ke_tot);
K[?R[
hz=zeros(ie_tot,je_tot,kh_tot);
fkW(Dt,
bx=zeros(ih_tot,je_tot,ke_tot);
xQz#i-v
by=zeros(ie_tot,jh_tot,ke_tot);
0&`}EXe<f
bz=zeros(ie_tot,je_tot,kh_tot);
f]}}yBte`
%***********************************************************************
}(=ml7 )v
% Initialize update coefficient arrays
X}apxSd"
%***********************************************************************
umDtp\
C1ex=zeros(size(ex));
7b.U!Ju
C2ex=zeros(size(ex));
0|2%# E
C3ex=zeros(size(ex));
ez0 \bym
C4ex=zeros(size(ex));
|t\KsW
C5ex=zeros(size(ex));
v7@H\x*
C6ex=zeros(size(ex));
Pi%tsKk%
C1ey=zeros(size(ey));
\ j]~>9
C2ey=zeros(size(ey));
ida*]+ ~
C3ey=zeros(size(ey));
WzG07 2w
C4ey=zeros(size(ey));
8Nvr93T,
C5ey=zeros(size(ey));
E:Y:X~vy
C6ey=zeros(size(ey));
Tcs3>lJ}
C1ez=zeros(size(ez));
*IlQ5+3I
C2ez=zeros(size(ez));
-fM1$/]
C3ez=zeros(size(ez));
\r]('x3S
C4ez=zeros(size(ez));
q<}PM
C5ez=zeros(size(ez));
hZ#\t
C6ez=zeros(size(ez));
-]&<Sr-
D1hx=zeros(size(hx));
0=m&^Jpp
D2hx=zeros(size(hx));
fI[dhd6
D3hx=zeros(size(hx));
Z90Fcp:R
D4hx=zeros(size(hx));
eH=c|m]!P
D5hx=zeros(size(hx));
-q(:%;
D6hx=zeros(size(hx));
L;C|ow^c
D1hy=zeros(size(hy));
tG 7+7Z=
D2hy=zeros(size(hy));
zZYHc?Z
D3hy=zeros(size(hy));
5TET<f6R
D4hy=zeros(size(hy));
>H?uuzi
D5hy=zeros(size(hy));
2$ VTu+
D6hy=zeros(size(hy));
Wy)('EM
D1hz=zeros(size(hz));
~}%&p& p
D2hz=zeros(size(hz));
Fhi5LhWe+.
D3hz=zeros(size(hz));
`Y\QUj
D4hz=zeros(size(hz));
1OPfRDn.bk
D5hz=zeros(size(hz));
+GPd
D6hz=zeros(size(hz));
#f9qlM32
%***********************************************************************
t|".=3%G
% Update coefficients, as described in Section 7.8.2.
!>|`ly$6
%
cX"G7Bh
% In order to simplify the update equations used in the time-stepping
vUfO4yfdg
% loop, we implement UPML update equations throughout the entire
F=5kF/}x-z
% grid. In the main grid, the electric-field update coefficients of
' WnpwY
% Equations 7.91a-f and the correponding magnetic field update
%jgg59
% coefficients extracted from Equations 7.89 and 7.90 are simplified
fSC.+,qk
% for the main grid (free space) and calculated below.
gDc]^K4>
%
%9YA^ri
%***********************************************************************
(lWKy9eTy`
C1=1.0;
&`sR){R
C2=dt;
{9:hg9;E*
C3=1.0;
/^QFqM;
C4=1.0/2.0/epsr/epsr/epsz/epsz;
HtS#_y%(
C5=2.0*epsr*epsz;
/~"AG l.
C6=2.0*epsr*epsz;
'7=<#Blc
D1=1.0;
j~$)c)h"
D2=dt;
2E([#Pzb
D3=1.0;
T@>63
D4=1.0/2.0/epsr/epsz/mur/muz;
5YLho2h38!
D5=2.0*epsr*epsz;
DUPmq!A
D6=2.0*epsr*epsz;
0, "ZV}
%***********************************************************************
_6/Qp`s
% Initialize main grid update coefficients
^X(_zinN"
%***********************************************************************
~s0P FS7
C1ex(:,jh_bc:jh_tot-upml,:)=C1;
mlmnkgl ]
C2ex(:,jh_bc:jh_tot-upml,:)=C2;
0Sz/c+ 6
C3ex(:,:,kh_bc:kh_tot-upml)=C3;
1[# =,
C4ex(:,:,kh_bc:kh_tot-upml)=C4;
DMRs}Yz6
C5ex(ih_bc:ie_tot-upml,:,:)=C5;
?xf~!D
C6ex(ih_bc:ie_tot-upml,:,:)=C6;
9Iy[E,j
C1ey(:,:,kh_bc:kh_tot-upml)=C1;
wtUG^hV #_
C2ey(:,:,kh_bc:kh_tot-upml)=C2;
3V!W@[ }:
C3ey(ih_bc:ih_tot-upml,:,:)=C3;
^zkd{ov
C4ey(ih_bc:ih_tot-upml,:,:)=C4;
B4 <_"0
C5ey(:,jh_bc:je_tot-upml,:)=C5;
*ig5Q(b*N
C6ey(:,jh_bc:je_tot-upml,:)=C6;
I$F\(]"@
C1ez(ih_bc:ih_tot-upml,:,:)=C1;
n_ OUWvs
C2ez(ih_bc:ih_tot-upml,:,:)=C2;
s!=!A
C3ez(:,jh_bc:jh_tot-upml,:)=C3;
0YHYx n
C4ez(:,jh_bc:jh_tot-upml,:)=C4;
I>8Bc
C5ez(:,:,kh_bc:ke_tot-upml)=C5;
{vCU^BN,k
C6ez(:,:,kh_bc:ke_tot-upml)=C6;
H|'$dO)W
D1hx(:,jh_bc:je_tot-upml,:)=D1;
"9.6\Y\*
D2hx(:,jh_bc:je_tot-upml,:)=D2;
$&NbLjeS
D3hx(:,:,kh_bc:ke_tot-upml)=D3;
<|wmjW/D
D4hx(:,:,kh_bc:ke_tot-upml)=D4;
aeQ{_SK
D5hx(ih_bc:ih_tot-upml,:,:)=D5;
?~]>H A:
D6hx(ih_bc:ih_tot-upml,:,:)=D6;
VN!^m]0
D1hy(:,:,kh_bc:ke_tot-upml)=D1;
H.f9d.<W%
D2hy(:,:,kh_bc:ke_tot-upml)=D2;
r$Kh3EEF`E
D3hy(ih_bc:ie_tot-upml,:,:)=D3;
s>V*=#L
D4hy(ih_bc:ie_tot-upml,:,:)=D4;
G+;g:_E=
D5hy(:,jh_bc:jh_tot-upml,:)=D5;
U bpg92
D6hy(:,jh_bc:jh_tot-upml,:)=D6;
OHQ3+WJ
D1hz(ih_bc:ie_tot-upml,:,:)=D1;
MQhYJ01i
D2hz(ih_bc:ie_tot-upml,:,:)=D2;
F}\[eFf[
D3hz(:,jh_bc:je_tot-upml,:)=D3;
X ^9t
D4hz(:,jh_bc:je_tot-upml,:)=D4;
EywZIw?mjX
D5hz(:,:,kh_bc:kh_tot-upml)=D5;
MEDskvBG
D6hz(:,:,kh_bc:kh_tot-upml)=D6;
Psg +\ 14
%***********************************************************************
!fif8kf
% Fill in PML regions
X{4xm,B/
%
PwRNBb}6
% PML theory describes a continuous grading of the material properties
c '/2F0y
% over the PML region. In the FDTD grid it is necessary to discretize
7?*~oVZW
% the grading by averaging the material properties over a grid cell
F'fM?!(
% width centered on each field component. As an example of the
pq@$&G
% implementation of this averaging, we take the integral of the
'$lw[1
% continuous sigma(x) in the PML region
HL|0 d }
%
"F04c|oR<X
% sigma_i = integral(sigma(x))/delta
&<m WA]cAL
%
C[^a/P`i
% where the integral is over a single grid cell width in x, and is
WodF -bE
% bounded by x1 and x2. Applying this to the polynomial grading of
sCuQB Z h
% Equation 7.60a produces
]eORw$f
%
; \Y-
% sigma_i = (x2^(m+1)-x1^(m+1))*sigmam/(delta*(m+1)*d^m)
s;~J2h[
%
aj% `x4eA
% where sigmam is the maximum value of sigma as described by Equation
if\k[O 1T6
% 7.62.
1Q3%!~<\s
%
(d1V1t2r6
% The definitions of x1 and x2 depend on the position of the field
F&-5&'6G+
% component within the grid cell. We have either
ok8JnQC
%
;o&_:]S
% x1 = (i-0.5)*delta, x2 = (i+0.5)*delta
2I9{+>k
%
Ebmqq#SHjX
% or
%pQdq[J={
%
REeD?u j
% x1 = (i)*delta, x2 = (i+1)*delta
7ZrJ#n8?ih
%
a^(S!I
% where i varies over the PML region.
8'>.#vyMGv
%
0R.Gjz*Q
%***********************************************************************
G>9'5Lt
rmax=exp(-16); %desired reflection error, designated as R(0) in Equation 7.62
,|=iv
orderbc=4; %order of the polynomial grading, designated as m in Equation 7.60a,b
"Vs Nyy
% x-varying material properties
tVK?VNW
delbc=upml*delta;
`=WzG"
sigmam=-log(rmax)*(orderbc+1.0)/(2.0*eta*delbc);
<PH3gyC
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1.0));
qM+!f2t
kmax=1;
%@)U/G6s}
kfactor=(kmax-1.0)/delta/(orderbc+1.0)/delbc^orderbc;
~0:$G?fz
for i=1:upml
5LnB]dW
?d,acm
% Coefficients for field components in the center of the grid cell
a .B\=3xn
x1=(upml-i+1)*delta;
JT}dor
x2=(upml-i)*delta;
jCdZ}M($
sigma=sigfactor*(x1^(orderbc+1)-x2^(orderbc+1));
!:`Ra
ki=1+kfactor*(x1^(orderbc+1)-x2^(orderbc+1));
-uS7~Ww.a
facm=(2*epsr*epsz*ki-sigma*dt);
j>0SE
facp=(2*epsr*epsz*ki+sigma*dt);
B]CS2LEqh
C5ex(i,:,:)=facp;
\L&qfMjW"Z
C5ex(ie_tot-i+1,:,:)=facp;
7~QwlU3n<F
C6ex(i,:,:)=facm;
$Ykp8u,(
C6ex(ie_tot-i+1,:,:)=facm;
V1AEjh
D1hz(i,:,:)=facm/facp;
#<^/yoH7C6
D1hz(ie_tot-i+1,:,:)=facm/facp;
.T[!!z#^
D2hz(i,:,:)=2.0*epsr*epsz*dt/facp;
u&Ie%@:h9R
D2hz(ie_tot-i+1,:,:)=2.0*epsr*epsz*dt/facp;
E}E7VQjM
D3hy(i,:,:)=facm/facp;
\:18Uoe7
D3hy(ie_tot-i+1,:,:)=facm/facp;
t2`X!`
D4hy(i,:,:)=1.0/facp/mur/muz;
EC:x,i
D4hy(ie_tot-i+1,:,:)=1.0/facp/mur/muz;
.'+|>6eU
% Coefficients for field components on the grid cell boundary
[7CH(o1a&
x1=(upml-i+1.5)*delta;
:zS>^RE
x2=(upml-i+0.5)*delta;
gb ^UFD L
sigma=sigfactor*(x1^(orderbc+1)-x2^(orderbc+1));
Qt)7mf
ki=1.0+kfactor*(x1^(orderbc+1)-x2^(orderbc+1));
CgaB) `.
facm=(2.0*epsr*epsz*ki-sigma*dt);
oc,U4+T
facp=(2.0*epsr*epsz*ki+sigma*dt);
c>%z)uY>/
C1ez(i,:,:)=facm/facp;
$/-wgyP3m+
C1ez(ih_tot-i+1,:,:)=facm/facp;
+$Ddd`J'
C2ez(i,:,:)=2.0*epsr*epsz*dt/facp;
&St~!y6M?
C2ez(ih_tot-i+1,:,:)=2.0*epsr*epsz*dt/facp;
gPn%`_d5
C3ey(i,:,:)=facm/facp;
'ocwXyP,
C3ey(ih_tot-i+1,:,:)=facm/facp;
gw*yIZ @3)
C4ey(i,:,:)=1.0/facp/epsr/epsz;
'R-JQE-]
C4ey(ih_tot-i+1,:,:)=1.0/facp/epsr/epsz;
cPa 0n4
D5hx(i,:,:)=facp;
!~VR|n-
D5hx(ih_tot-i+1,:,:)=facp;
"fX8xZdS
D6hx(i,:,:)=facm;
QB oZCLv
D6hx(ih_tot-i+1,:,:)=facm;
+;4AG::GN
j/; @P
end
~gcst;
% PEC walls
co(fGp#!
C1ez(1,:,:)=-1.0;
P,+0
C1ez(ih_tot,:,:)=-1.0;
8M5!5Jzv
C2ez(1,:,:)=0.0;
UeC%Wa<[
C2ez(ih_tot,:,:)=0.0;
{jCu9 ]c!
C3ey(1,:,:)=-1.0;
rA>R`
C3ey(ih_tot,:,:)=-1.0;
WL*W=(
C4ey(1,:,:)=0.0;
*U5>j#,
C4ey(ih_tot,:,:)=0.0;
G> 5=`
% y-varying material properties
tleK(^
delbc=upml*delta;
P"[l86:
sigmam=-log(rmax)*epsr*epsz*cc*(orderbc+1.0)/(2.0*delbc);
Z{|.xg sY
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1.0));
2Q;Y@%G
kmax=1.0;
6H . L!tUI
kfactor=(kmax-1.0)/delta/(orderbc+1.0)/delbc^orderbc;
h)aWerzL
for j=1:upml
lFzQG:k@
aL$c).hq0
% Coefficients for field components in the center of the grid cell
cnjj) c
y1=(upml-j+1)*delta;
EIVQu~,H
y2=(upml-j)*delta;
g~WNL^GGS
sigma=sigfactor*(y1^(orderbc+1)-y2^(orderbc+1));
9x 6ca
ki=1+kfactor*(y1^(orderbc+1)-y2^(orderbc+1));
hBs>2u|z9
facm=(2*epsr*epsz*ki-sigma*dt);
tkUW)ScJ
facp=(2*epsr*epsz*ki+sigma*dt);
UO7a}Tz<
2TevdyI
C5ey(:,j,:)=facp;
GurE7J^=
C5ey(:,je_tot-j+1,:)=facp;
{?kKpMNNn
C6ey(:,j,:)=facm;
`)xU;-
C6ey(:,je_tot-j+1,:)=facm;
^FyvaO
D1hx(:,j,:)=facm/facp;
+{ ,w#@
D1hx(:,je_tot-j+1,:)=facm/facp;
<o"D/<XnB3
D2hx(:,j,:)=2*epsr*epsz*dt/facp;
_tR.RAaa"
D2hx(:,je_tot-j+1,:)=2*epsr*epsz*dt/facp;
vYTPZ@RL
D3hz(:,j,:)=facm/facp;
bx%hizb
D3hz(:,je_tot-j+1,:)=facm/facp;
ct|'I]nB.h
D4hz(:,j,:)=1/facp/mur/muz;
{ <ao4w6B
D4hz(:,je_tot-j+1,:)=1/facp/mur/muz;
9_CA5?y$:
%V" +}Dr
% Coefficients for field components on the grid cell boundary
9lazo
y1=(upml-j+1.5)*delta;
Wy0a2Ve
y2=(upml-j+0.5)*delta;
N!4xP.Ps
sigma=sigfactor*(y1^(orderbc+1)-y2^(orderbc+1));
uk>/Il
ki=1+kfactor*(y1^(orderbc+1)-y2^(orderbc+1));
emDvy2uA#
facm=(2*epsr*epsz*ki-sigma*dt);
XiZ Zo
facp=(2*epsr*epsz*ki+sigma*dt);
}Rf:DmPE
\c@qtIc
C1ex(:,j,:)=facm/facp;
Qe=Q8cT
C1ex(:,jh_tot-j+1,:)=facm/facp;
$dWl A<u
C2ex(:,j,:)=2*epsr*epsz*dt/facp;
th>yi)m
C2ex(:,jh_tot-j+1,:)=2*epsr*epsz*dt/facp;
[laL6
C3ez(:,j,:)=facm/facp;
N_WA4?rB
C3ez(:,jh_tot-j+1,:)=facm/facp;
7;#dX~>@{
C4ez(:,j,:)=1/facp/epsr/epsz;
xF :poi
C4ez(:,jh_tot-j+1,:)=1/facp/epsr/epsz;
1rzq$, O
D5hy(:,j,:)=facp;
C">=2OO
D5hy(:,jh_tot-j+1,:)=facp;
h-v&I>
D6hy(:,j,:)=facm;
h0EGhJs
D6hy(:,jh_tot-j+1,:)=facm;
)Q pP1[
end
]mGsNQ ].H
% PEC walls
=B 4g EWR
C1ex(:,1,:)=-1;
,uD*FSp>
C1ex(:,jh_tot,:)=-1;
a[{QlD^D
C2ex(:,1,:)=0;
L)//- k9
C2ex(:,jh_tot,:)=0;
} C2i#;b
C3ez(:,1,:)=-1;
QW"6]
C3ez(:,jh_tot,:)=-1;
@_weMz8}
C4ez(:,1,:)=0;
:Pp;{=J
C4ez(:,jh_tot,:)=0;
\~1zAiSd>#
% z-varying material properties
E'kQ
delbc=upml*delta;
m3v*,~
sigmam=-log(rmax)*epsr*epsz*cc*(orderbc+1)/(2*delbc);
3YNkT"~T
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1));
VRN9 yn2
kmax=1;
*R~(:z>>
kfactor=(kmax-1)/delta/(orderbc+1)/delbc^orderbc;
F|ML$
for k=1:upml
x /Ky: Ky
% Coefficients for field components in the center of the grid cell
p2_Zsq
z1=(upml-k+1)*delta;
uB)6\fkTB
z2=(upml-k)*delta;
ez<wEtS
sigma=sigfactor*(z1^(orderbc+1)-z2^(orderbc+1));
MBTt'6M
ki=1+kfactor*(z1^(orderbc+1)-z2^(orderbc+1));
<t|9`l_XW
facm=(2*epsr*epsz*ki-sigma*dt);
2g07wJ6x
facp=(2*epsr*epsz*ki+sigma*dt);
!`S%l1[Z
Q)|LiCR,
C5ez(:,:,k)=facp;
keq[6Lv
C5ez(:,:,ke_tot-k+1)=facp;
0 VgnN
C6ez(:,:,k)=facm;
pQ2)M8 gf
C6ez(:,:,ke_tot-k+1)=facm;
QCY{D@7T
D1hy(:,:,k)=facm/facp;
Pc-8L]2oaF
D1hy(:,:,ke_tot-k+1)=facm/facp;
TH}ycue
D2hy(:,:,k)=2*epsr*epsz*dt/facp;
Q24:G
D2hy(:,:,ke_tot-k+1)=2*epsr*epsz*dt/facp;
(Vv[
D3hx(:,:,k)=facm/facp;
01d26`G$i~
D3hx(:,:,ke_tot-k+1)=facm/facp;
{&j{V-}f
D4hx(:,:,k)=1/facp/mur/muz;
$T%<'=u|E
D4hx(:,:,ke_tot-k+1)=1/facp/mur/muz;
o>,z %+
.j4ziRa-
% Coefficients for field components on the grid cell boundary
r.G/f{=<@
z1=(upml-k+1.5)*delta;
;s/b_RN
z2=(upml-k+0.5)*delta;
})u}PQ
sigma=sigfactor*(z1^(orderbc+1)-z2^(orderbc+1));
R*5;J`TW
ki=1+kfactor*(z1^(orderbc+1)-z2^(orderbc+1));
%D6Wlf+^n
facm=(2*epsr*epsz*ki-sigma*dt);
JFk|Uqs(
facp=(2*epsr*epsz*ki+sigma*dt);
Vv"wf;#
).`a-Pv
C1ey(:,:,k)=facm/facp;
)p_LkX(
C1ey(:,:,kh_tot-k+1)=facm/facp;
s&_O2(l
C2ey(:,:,k)=2*epsr*epsz*dt/facp;
X}QmeY[0I
C2ey(:,:,kh_tot-k+1)=2*epsr*epsz*dt/facp;
m_U6"\n 5
C3ex(:,:,k)=facm/facp;
tMk>Bx9[
C3ex(:,:,kh_tot-k+1)=facm/facp;
<TROs!x$a
C4ex(:,:,k)=1/facp/epsr/epsz;
u9^;~i,
C4ex(:,:,kh_tot-k+1)=1/facp/epsr/epsz;
HG6{`i
D5hz(:,:,k)=facp;
(uxQBy
D5hz(:,:,kh_tot-k+1)=facp;
6V?&hq&t
D6hz(:,:,k)=facm;
GB0b|9(6D"
D6hz(:,:,kh_tot-k+1)=facm;
Ch!Q? 4
end
21EUP6}8j
% PEC walls
TF3q?0
C1ey(:,:,1)=-1;
x$b[m20
C1ey(:,:,kh_tot)=-1;
<T% hfW
C2ey(:,:,1)=0;
J?ZVzKTb>}
C2ey(:,:,kh_tot)=0;
GSb)|mj
C3ex(:,:,1)=-1;
,* vnt6C*
C3ex(:,:,kh_tot)=-1;
Tb6x@MorP
C4ex(:,:,1)=0;
I;4CvoT
C4ex(:,:,kh_tot)=0;
(tz]!Aa{s
%figure
!?M_%fNE
%set(gcf,'DoubleBuffer','on')
{3uSg)
%***********************************************************************
umrI4.1c
% Begin time stepping loop
HNyDWD)_
%***********************************************************************
A;nmua-Fv
d0=zeros(1,nmax);d1=zeros(1,nmax);d2=zeros(1,nmax);
-&$%m)wN
for n=1:nmax
m%(JRh
bQQ/7KM
% Update magnetic field
!eoec2h#5
bstore=bx;
B148wh#r
bx(2:ie_tot,:,:)=D1hx(2:ie_tot,:,:).* bx(2:ie_tot,:,:)-...
`.-k%2?/
D2hx(2:ie_tot,:,:).*((ez(2:ie_tot,2:jh_tot,:)-ez(2:ie_tot,1:je_tot,:))-...
;= @-j@?
(ey(2:ie_tot,:,2:kh_tot)-ey(2:ie_tot,:,1:ke_tot)))./delta;
snNg:rTL
hx(2:ie_tot,:,:)= D3hx(2:ie_tot,:,:).*hx(2:ie_tot,:,:)+...
5BO!K$6
D4hx(2:ie_tot,:,:).*(D5hx(2:ie_tot,:,:).*bx(2:ie_tot,:,:)-...
10a*7 L
D6hx(2:ie_tot,:,:).*bstore(2:ie_tot,:,:));
y#0Z[[I0
bstore=by;
F"P:9`/
by(:,2:je_tot,:)=D1hy(:,2:je_tot,:).* by(:,2:je_tot,:)-...
+VCo=oA
D2hy(:,2:je_tot,:).*((ex(:,2:je_tot,2:kh_tot)-ex(:,2:je_tot,1:ke_tot))-...
CN>};>WlG
(ez(2:ih_tot,2:je_tot,:)-ez(1:ie_tot,2:je_tot,:)))./delta;
pXlBKJmW
hy(:,2:je_tot,:)= D3hy(:,2:je_tot,:).*hy(:,2:je_tot,:)+...
!!#ale&
D4hy(:,2:je_tot,:).*(D5hy(:,2:je_tot,:).*by(:,2:je_tot,:)-...
1mPS)X_
D6hy(:,2:je_tot,:).*bstore(:,2:je_tot,:));
3Qr!?=nf
bstore=bz;
)Nd:PnA
bz(:,:,2:ke_tot)=D1hz(:,:,2:ke_tot).* bz(:,:,2:ke_tot)-...
M!DoR6
D2hz(:,:,2:ke_tot).*((ey(2:ih_tot,:,2:ke_tot)-ey(1:ie_tot,:,2:ke_tot))-...
eQIi}\`
(ex(:,2:jh_tot,2:ke_tot)-ex(:,1:je_tot,2:ke_tot)))./delta;
*B}R4Y|g
hz(:,:,2:ke_tot)= D3hz(:,:,2:ke_tot).*hz(:,:,2:ke_tot)+...
<RsKV$Je I
D4hz(:,:,2:ke_tot).*(D5hz(:,:,2:ke_tot).*bz(:,:,2:ke_tot)-...
ojqX#>0K
D6hz(:,:,2:ke_tot).*bstore(:,:,2:ke_tot));
>-+X;0&
`B0*/ml
% Update electric field
=w?cp}HW
dstore=dx;
IL"#TKKv
dx(:,2:je_tot,2:ke_tot)=C1ex(:,2:je_tot,2:ke_tot).* dx(:,2:je_tot,2:ke_tot)+...
Elk$9 <<
C2ex(:,2:je_tot,2:ke_tot).*((hz(:,2:je_tot,2:ke_tot)-hz(:,1:je_tot-1,2:ke_tot))-...
Sf:lN4
(hy(:,2:je_tot,2:ke_tot)-hy(:,2:je_tot,1:ke_tot-1)))./delta;
z ate%y
ex(:,2:je_tot,2:ke_tot)=C3ex(:,2:je_tot,2:ke_tot).*ex(:,2:je_tot,2:ke_tot)+...
htSk2N/
C4ex(:,2:je_tot,2:ke_tot).*(C5ex(:,2:je_tot,2:ke_tot).*dx(:,2:je_tot,2:ke_tot)-...
rAdcMFW
C6ex(:,2:je_tot,2:ke_tot).*dstore(:,2:je_tot,2:ke_tot));
Ym2m1
dstore=dy;
;mxT>|z
dy(2:ie_tot,:,2:ke_tot)=C1ey(2:ie_tot,:,2:ke_tot).* dy(2:ie_tot,:,2:ke_tot)+...
SLB iQd.
C2ey(2:ie_tot,:,2:ke_tot).*((hx(2:ie_tot,:,2:ke_tot)-hx(2:ie_tot,:,1:ke_tot-1))-...
6oBt<r?CJ
(hz(2:ie_tot,:,2:ke_tot)-hz(1:ie_tot-1,:,2:ke_tot)))./delta;
VQ3&
ey(2:ie_tot,:,2:ke_tot)=C3ey(2:ie_tot,:,2:ke_tot).*ey(2:ie_tot,:,2:ke_tot)+...
W>IKy#
C4ey(2:ie_tot,:,2:ke_tot).*(C5ey(2:ie_tot,:,2:ke_tot).*dy(2:ie_tot,:,2:ke_tot)-...
qr;" K?NX
C6ey(2:ie_tot,:,2:ke_tot).*dstore(2:ie_tot,:,2:ke_tot));
XdVC>6
dstore=dz;
`8bp6}OD,
dz(2:ie_tot,2:je_tot,:)=C1ez(2:ie_tot,2:je_tot,:).* dz(2:ie_tot,2:je_tot,:)+...
$iJ #%&D
C2ez(2:ie_tot,2:je_to ..
1T?%i
LMzYsXG*[
未注册仅能浏览
部分内容
,查看
全部内容及附件
请先
登录
或
注册
共
条评分
离线
kongruigege
UID :36059
注册:
2009-06-25
登录:
2011-06-20
发帖:
46
等级:
仿真新人
1楼
发表于: 2009-11-22 13:46:54
哎,连个回答俺的也没有
NFPkK?+
共
条评分
离线
lx84
呵呵
UID :30566
注册:
2009-04-22
登录:
2020-09-16
发帖:
866
等级:
积极交流六级
2楼
发表于: 2009-11-22 19:07:49
这个程序我调过,没问题的。这个加的是软源,Ez分量是上一步的值和高斯脉冲叠加的结果
共
条评分
继续!
离线
richardstl
UID :32014
注册:
2009-05-09
登录:
2010-06-08
发帖:
20
等级:
仿真新人
3楼
发表于: 2009-11-22 20:13:13
高手们都说说
B Xp3u|t
共
条评分
离线
kongruigege
UID :36059
注册:
2009-06-25
登录:
2011-06-20
发帖:
46
等级:
仿真新人
4楼
发表于: 2009-11-22 20:21:26
好的,谢谢啊,可让俺放心了
共
条评分
离线
babobee
UID :22979
注册:
2008-12-11
登录:
2012-05-31
发帖:
88
等级:
仿真一级
5楼
发表于: 2009-12-06 18:51:00
这个图应该是高斯脉冲的形式 但你的不是
HukHZ;5
检查一下你的空间步长设定是不是太短了 也可以适当的增加时间步 让程序多迭代一些时间步 看看有没有什么变化
共
1
条评分
gwzhao
技术分
+1
积极参与讨论+技术分 论坛感谢您的参与
2009-12-07
离线
464459511
UID :9635
注册:
2008-03-19
登录:
2011-04-11
发帖:
68
等级:
仿真一级
6楼
发表于: 2009-12-14 10:45:05
同意5楼的看法,可能是时间步长太小了,不过如果增大时间步长的间隔有可能会发散,造成不稳定,所以妥帖的办法是增大时间步数。
共
条评分
离线
cem-uestc
UID :9061
注册:
2008-03-07
登录:
2019-01-05
发帖:
2575
等级:
荣誉管理员
7楼
发表于: 2010-03-02 09:45:13
其实这个结果是对了
b{sFN!
原因解释如下:
o)NWsUXf
你采用的一般高斯源,它主要能量集中在低频,即直流分量很大,观察曲线后面部分是直线,是直流源的影响,相当于在观察处的静场值。
共
条评分
欢迎光临
http://www.mwtee.com/home.php?mod=space&uid=13535
离线
cem-uestc
UID :9061
注册:
2008-03-07
登录:
2019-01-05
发帖:
2575
等级:
荣誉管理员
8楼
发表于: 2010-03-02 09:46:16
如果采用一阶以上的Gauss源或调制高斯源,就没有直流分量,仿真出来没有这个现象
共
条评分
欢迎光临
http://www.mwtee.com/home.php?mod=space&uid=13535
发帖
回复