登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
时域有限差分法 FDTD
>
请大家帮我分析一下仿真三维自由空间的结 ..
发帖
回复
1729
阅读
8
回复
[
求助
]
请大家帮我分析一下仿真三维自由空间的结果,让这UPML愁死了
离线
kongruigege
UID :36059
注册:
2009-06-25
登录:
2011-06-20
发帖:
46
等级:
仿真新人
0楼
发表于: 2009-11-22 10:42:17
图片:cuwu.jpg
h7J4 p
利用3D-upml 仿真了自由空间,加的激励为高斯脉冲ez(is,js,ks)=ez(is,js,ks)+exp(-((n-45)^2/15^2));
Huf;A1.
然后我就检测了一下ez(is,js,ks)随时间的变化图,结果是图中所示,不再是高斯脉冲形式
:ioD*k
这样是不是不对啊。 程序师用的下面的那个,基本没改,就是改变了一个激励源。
mO&zE;/[
%***********************************************************************
Ah_0o_Di
% 3-D FDTD code with UPML absorbing boundary conditions
^ wb 9 n
%***********************************************************************
dyVfDF
%
Vw+RRi(
% Program author: Keely J. Willis, Graduate Student
pReSvF}}C
% UW Computational Electromagnetics Laboratory
Ti&v9re%wO
% Director: Susan C. Hagness
Y InPmR
% Department of Electrical and Computer Engineering
A 1B_EX.
% University of Wisconsin-Madison
b] ~
% 1415 Engineering Drive
>DoP2]
% Madison, WI 53706-1691
|[X-i["y
%
kjwillis@wisc.edu
t(Gg 1
%
mOntc6&]
% Copyright 2005
S=qx,<J 39
%
7.bPPr&
% This MATLAB M-file implements the finite-difference time-domain
M i047-% (
% solution of Maxwell's curl equations over a three-dimensional
`gz/?q
% Cartesian space lattice comprised of uniform cubic grid cells.
q+W*?a)
%
~'0W(~Q8
% The dimensions of the computational domain are 8.2 cm
/A93mY[
% (x-direction), 3.4 cm (y-direction), and 3.2 cm (z-direction).
FQM9>l@6)>
% The grid is terminated with UPML absorbing boundary conditions.
2q ~y\fe
%
@6%o0p9zz
% An electric current source comprised of two collinear Jz components
zj2l&)N
% (realizing a Hertzian dipole) excites a radially propagating wave.
Ir6g"kwCKq
% The current source is located in the center of the grid. The
A>%mJ3M
% source waveform is a differentiated Gaussian pulse given by
8y'.H21:;
% J(t)=J0*(t-t0)*exp(-(t-t0)^2/tau^2),
2<tU
% where tau=50 ps. The FWHM spectral bandwidth of this zero-dc-
Yz? 8n
% content pulse is approximately 7 GHz. The grid resolution
Vr hd\
% (dx = 2 mm) was chosen to provide at least 10 samples per
"=!sZO?3
% wavelength up through 15 GHz.
XPT@ LM
%
La r9}nx0
% To execute this M-file, type "fdtd3D_UPML" at the MATLAB prompt.
]}L tf,9
%
v)<|@TD)
% This code has been tested in the following Matlab environments:
oa6&?4K?F
% Matlab version 6.1.0.450 Release 12.1 (May 18, 2001)
6-QcHJ>m6U
% Matlab version 6.5.1.199709 Release 13 Service Pack 1 (August 4, 2003)
g[(Eh?]Sc
% Matlab version 7.0.0.19920 R14 (May 6, 2004)
PG@6*E
% Matlab version 7.0.1.24704 R14 Service Pack 1 (September 13, 2004)
Wd?=RO`a
% Matlab version 7.0.4.365 R14 Service Pack 2 (January 29, 2005)
j.+}Z |
%
l!j,9wz7
% Note: if you are using Matlab version 6.x, you may wish to make
e@{Rlz
% one or more of the following modifications to this code:
.~fov8
% --uncomment line numbers 485 and 486
OPC8fX5.
% --comment out line numbers 552 and 561
tgC)vZ&a
%
{9-n3j}
%***********************************************************************
3M5wF6nY[[
clear
4DsHUc6
%***********************************************************************
o_n 3.O=
% Fundamental constants
BVu{To:g
%***********************************************************************
#7=- zda5
cc=2.99792458e8;
U &RZx&W
muz=4.0*pi*1.0e-7;
R})b%y`]
epsz=1.0/(cc*cc*muz);
gbziEjRe
etaz=sqrt(muz/epsz);
eDY)i9"W
%***********************************************************************
2#R8}\
% Material parameters
R<;;Ph
%***********************************************************************
fT.MglJcb
mur=1.0;
G(gZL%M6
epsr=1.0;
vfdTGM`3
eta=etaz*sqrt(mur/epsr);
23/;W|
%***********************************************************************
Z+2 j(
% Grid parameters
75eZhs[b
%
?<1~KLPMhY
% Each grid size variable name describes the number of sampled points
Kon|TeC>d
% for a particular field component in the direction of that component.
@0-vf>e3-
% Additionally, the variable names indicate the region of the grid
- *v)sP"@
% for which the dimension is relevant. For example, ie_tot is the
,M=s3D8C
% number of sample points of Ex along the x-axis in the total
\{;3'<
% computational grid, and jh_bc is the number of sample points of Hy
sf8F h
% along the y-axis in the y-normal UPML regions.
G{gc]7\=Cd
%
@@H?w7y?&
%***********************************************************************
hkx (r5o
ie=60; % Size of main grid
Lmw4
je=60;
i0rh{Ko
ke=60;
Y=Om0=v
ih=ie+1;
7'Gkip
jh=je+1;
5=/j
kh=ke+1;
bU$M)
upml=10; % Thickness of PML boundaries
>1 hhz
ih_bc=upml+1;
O3tw@ &k
jh_bc=upml+1;
Kiq[PK
kh_bc=upml+1;
fPq)Lx1'
ie_tot=ie+2*upml; % Size of total computational domain
zoZ10?ojC
je_tot=je+2*upml;
~ nb1c:F
ke_tot=ke+2*upml;
pyp0SGCM:
ih_tot=ie_tot+1;
]nq/yAF%
jh_tot=je_tot+1;
v(=E R%
kh_tot=ke_tot+1;
xc,Wm/[
is=round(ih_tot/2); % Location of z-directed current source
@4=Az1W*
js=round(jh_tot/2);
_ O;R
ks=round(ke_tot/2);
\`R8s_S
%***********************************************************************
dP=,<H#]m
% Fundamental grid parameters
#~[{*[B+
%***********************************************************************
VM<$!Aaz
delta=0.002;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3,1HD_
dt=delta*sqrt(epsr*mur)/(2.0*cc);
d fSj= 4
nmax=100;
t"P:}ps{?
%***********************************************************************
s&1}^'|
% Differentiated Gaussian pulse excitation
iH8V] %
%***********************************************************************
j7~Rw"(XQc
rtau=50.0e-12;
a(lmm@;V<
tau=rtau/dt;
BH0s` K"
ndelay=3*tau;
8=OpX,t(
J0=1.0*epsz;
C4)m4r%
%***********************************************************************
\i3)/sZ?l
% Initialize field arrays
P DwBSj
%***********************************************************************
!Y10UmMu
ex=zeros(ie_tot,jh_tot,kh_tot);
'<xV]k|v
ey=zeros(ih_tot,je_tot,kh_tot);
#wp~lW9!s9
ez=zeros(ih_tot,jh_tot,ke_tot);
yiMqe^zy
dx=zeros(ie_tot,jh_tot,kh_tot);
^w_\D?
dy=zeros(ih_tot,je_tot,kh_tot);
C(kL=WD
dz=zeros(ih_tot,jh_tot,ke_tot);
+mC?.B2D
hx=zeros(ih_tot,je_tot,ke_tot);
rp=Y }
hy=zeros(ie_tot,jh_tot,ke_tot);
?{\h`+A
hz=zeros(ie_tot,je_tot,kh_tot);
f/t`B^}@
bx=zeros(ih_tot,je_tot,ke_tot);
g0#w 4rGF)
by=zeros(ie_tot,jh_tot,ke_tot);
^.c<b_(=h
bz=zeros(ie_tot,je_tot,kh_tot);
-Eoq#ULvR
%***********************************************************************
ATjE8!gO!
% Initialize update coefficient arrays
ydMSL25<+
%***********************************************************************
N1hj[G[H"
C1ex=zeros(size(ex));
.0p'G}1
C2ex=zeros(size(ex));
tgY/8&$M
C3ex=zeros(size(ex));
vURgR
C4ex=zeros(size(ex));
[DvQk?,t
C5ex=zeros(size(ex));
i5SDy(?r
C6ex=zeros(size(ex));
u{S"NEc
C1ey=zeros(size(ey));
kAq#cLprG
C2ey=zeros(size(ey));
\LM.>vJ
C3ey=zeros(size(ey));
r?/!VO-*N
C4ey=zeros(size(ey));
}^2'@y!(
C5ey=zeros(size(ey));
,n$NF0^l
C6ey=zeros(size(ey));
N v6=[_D
C1ez=zeros(size(ez));
CW -[c
C2ez=zeros(size(ez));
~l]g4iEp
C3ez=zeros(size(ez));
M2I*_pI
C4ez=zeros(size(ez));
"(Nt9K%P)
C5ez=zeros(size(ez));
b-Ru UfUn0
C6ez=zeros(size(ez));
d<[L^s9
D1hx=zeros(size(hx));
vbfQy2q
D2hx=zeros(size(hx));
\-8aTF
D3hx=zeros(size(hx));
k:URP`w[X=
D4hx=zeros(size(hx));
t\-|J SZ
D5hx=zeros(size(hx));
._q<~_~R
D6hx=zeros(size(hx));
a|z@5r%
D1hy=zeros(size(hy));
c$x>6&&L
D2hy=zeros(size(hy));
J3$@: S'
D3hy=zeros(size(hy));
U:bnX51D4
D4hy=zeros(size(hy));
"O~kIT?/v
D5hy=zeros(size(hy));
xtut S
D6hy=zeros(size(hy));
49YN@PXC
D1hz=zeros(size(hz));
F |aLF{
D2hz=zeros(size(hz));
klnk{R.>|
D3hz=zeros(size(hz));
<GLn!~Px@5
D4hz=zeros(size(hz));
-_= m j
D5hz=zeros(size(hz));
gt\kTn."
D6hz=zeros(size(hz));
Ey%KbvNv
%***********************************************************************
vsJDVJ +=
% Update coefficients, as described in Section 7.8.2.
e-#Vs{?|r
%
w-3Lw<
% In order to simplify the update equations used in the time-stepping
'V\V=yc1
% loop, we implement UPML update equations throughout the entire
e xkPu-[W
% grid. In the main grid, the electric-field update coefficients of
a%5/Oc[[
% Equations 7.91a-f and the correponding magnetic field update
vRH2[{KQ9
% coefficients extracted from Equations 7.89 and 7.90 are simplified
1u"#rC>7.4
% for the main grid (free space) and calculated below.
*,28@_EwY
%
EI496bsRHm
%***********************************************************************
`pF7B6[B
C1=1.0;
] !n3j=*
C2=dt;
Nh\o39=
C3=1.0;
$laUkD#vz
C4=1.0/2.0/epsr/epsr/epsz/epsz;
C7K]c4T
C5=2.0*epsr*epsz;
=MT'e,T
C6=2.0*epsr*epsz;
qG +PqK;
D1=1.0;
M 0$E_*
D2=dt;
^I)+u>fJ
D3=1.0;
-d^'-s
D4=1.0/2.0/epsr/epsz/mur/muz;
U+zntB
D5=2.0*epsr*epsz;
5v^tPGg4
D6=2.0*epsr*epsz;
tG~[E,/`
%***********************************************************************
=_CH$F!U
% Initialize main grid update coefficients
;SX~u*`R
%***********************************************************************
w~yC^`
C1ex(:,jh_bc:jh_tot-upml,:)=C1;
:6]qr 86
C2ex(:,jh_bc:jh_tot-upml,:)=C2;
[&kz4_
C3ex(:,:,kh_bc:kh_tot-upml)=C3;
KDb`g}1Q
C4ex(:,:,kh_bc:kh_tot-upml)=C4;
*K BaKS
C5ex(ih_bc:ie_tot-upml,:,:)=C5;
!t}yoN n|
C6ex(ih_bc:ie_tot-upml,:,:)=C6;
_fSBb<
C1ey(:,:,kh_bc:kh_tot-upml)=C1;
]^,! ;do
C2ey(:,:,kh_bc:kh_tot-upml)=C2;
Ss_}@p ^
C3ey(ih_bc:ih_tot-upml,:,:)=C3;
| ^G38
C4ey(ih_bc:ih_tot-upml,:,:)=C4;
O{0it6
C5ey(:,jh_bc:je_tot-upml,:)=C5;
$9@AwS@Uu
C6ey(:,jh_bc:je_tot-upml,:)=C6;
'V&Tlw|
C1ez(ih_bc:ih_tot-upml,:,:)=C1;
1 J}ML}h)
C2ez(ih_bc:ih_tot-upml,:,:)=C2;
?!O4ia3nFk
C3ez(:,jh_bc:jh_tot-upml,:)=C3;
<W+9h0c
C4ez(:,jh_bc:jh_tot-upml,:)=C4;
Jt0U`_
C5ez(:,:,kh_bc:ke_tot-upml)=C5;
F x^X(!)~]
C6ez(:,:,kh_bc:ke_tot-upml)=C6;
F@mxd
D1hx(:,jh_bc:je_tot-upml,:)=D1;
Tgh?=]H
D2hx(:,jh_bc:je_tot-upml,:)=D2;
Hg$7[um
D3hx(:,:,kh_bc:ke_tot-upml)=D3;
a ,"
D4hx(:,:,kh_bc:ke_tot-upml)=D4;
J 5xMA-
D5hx(ih_bc:ih_tot-upml,:,:)=D5;
VfUHqdg-
D6hx(ih_bc:ih_tot-upml,:,:)=D6;
BWNI|pq)v
D1hy(:,:,kh_bc:ke_tot-upml)=D1;
RC?vU
D2hy(:,:,kh_bc:ke_tot-upml)=D2;
>P]gjYN
D3hy(ih_bc:ie_tot-upml,:,:)=D3;
pw`'q(ad
D4hy(ih_bc:ie_tot-upml,:,:)=D4;
)j\_*SoH
D5hy(:,jh_bc:jh_tot-upml,:)=D5;
*F!1xyg
D6hy(:,jh_bc:jh_tot-upml,:)=D6;
Vf<q-3q
D1hz(ih_bc:ie_tot-upml,:,:)=D1;
%>5>wP
D2hz(ih_bc:ie_tot-upml,:,:)=D2;
=-,'LOE
D3hz(:,jh_bc:je_tot-upml,:)=D3;
p$uPj*
D4hz(:,jh_bc:je_tot-upml,:)=D4;
7O:g;UI#
D5hz(:,:,kh_bc:kh_tot-upml)=D5;
(][-()YV
D6hz(:,:,kh_bc:kh_tot-upml)=D6;
~@(C+ 3,
%***********************************************************************
XUnw*3tPJ
% Fill in PML regions
4c[/%e:\-
%
N9*:]a
% PML theory describes a continuous grading of the material properties
v\_\bT1
% over the PML region. In the FDTD grid it is necessary to discretize
=3`|D0E
% the grading by averaging the material properties over a grid cell
E^Q J50
% width centered on each field component. As an example of the
9M5W4&
% implementation of this averaging, we take the integral of the
|* ^LsuFb
% continuous sigma(x) in the PML region
#sxv?r
%
qDU4W7|T`
% sigma_i = integral(sigma(x))/delta
vn!3Z! dm(
%
E(vO^)#
% where the integral is over a single grid cell width in x, and is
0a bQY
% bounded by x1 and x2. Applying this to the polynomial grading of
k1ja ([Q
% Equation 7.60a produces
K/j u=>
%
tY: Nq*@
% sigma_i = (x2^(m+1)-x1^(m+1))*sigmam/(delta*(m+1)*d^m)
crN*eFeW
%
57=d;Yg e
% where sigmam is the maximum value of sigma as described by Equation
n oM=8C&U
% 7.62.
"eqzn KT%u
%
lQBEq"7$
% The definitions of x1 and x2 depend on the position of the field
LNyrIk/1
% component within the grid cell. We have either
]^T-X/v9
%
%V+"i_{m
% x1 = (i-0.5)*delta, x2 = (i+0.5)*delta
v1Q78P
%
QZIzddwp
% or
>239SyC-,
%
Sc/$2gSG
% x1 = (i)*delta, x2 = (i+1)*delta
}2iR=$2
%
+vxOCN4}v
% where i varies over the PML region.
W6_ rSVm
%
`( w"{8laB
%***********************************************************************
2pU'&8
rmax=exp(-16); %desired reflection error, designated as R(0) in Equation 7.62
?5/7 @V
orderbc=4; %order of the polynomial grading, designated as m in Equation 7.60a,b
iJZNSRQJ}r
% x-varying material properties
,aa 4Kh
delbc=upml*delta;
g7a446QR\K
sigmam=-log(rmax)*(orderbc+1.0)/(2.0*eta*delbc);
cpALs1j:
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1.0));
O6vxp?:^
kmax=1;
^9]iUx
kfactor=(kmax-1.0)/delta/(orderbc+1.0)/delbc^orderbc;
3W]gn8
for i=1:upml
U| VL+9#hd
.g1x$cQ1<
% Coefficients for field components in the center of the grid cell
j--byk6PB
x1=(upml-i+1)*delta;
VBw5[
x2=(upml-i)*delta;
'nBP%
sigma=sigfactor*(x1^(orderbc+1)-x2^(orderbc+1));
0{vH .b @
ki=1+kfactor*(x1^(orderbc+1)-x2^(orderbc+1));
XH@(V4J(.
facm=(2*epsr*epsz*ki-sigma*dt);
j/fniyJ)
facp=(2*epsr*epsz*ki+sigma*dt);
B\e*-:pq>
C5ex(i,:,:)=facp;
x)GheM^
C5ex(ie_tot-i+1,:,:)=facp;
Pq8oK'z-
C6ex(i,:,:)=facm;
g6;smtu_T
C6ex(ie_tot-i+1,:,:)=facm;
p$qk\efv*4
D1hz(i,:,:)=facm/facp;
gPb.%^p
D1hz(ie_tot-i+1,:,:)=facm/facp;
YB<nz<;JR
D2hz(i,:,:)=2.0*epsr*epsz*dt/facp;
k!}(a0h
D2hz(ie_tot-i+1,:,:)=2.0*epsr*epsz*dt/facp;
{L~dER
D3hy(i,:,:)=facm/facp;
qw?(^uZNW
D3hy(ie_tot-i+1,:,:)=facm/facp;
g(;OUkj$Zp
D4hy(i,:,:)=1.0/facp/mur/muz;
y j#*H
D4hy(ie_tot-i+1,:,:)=1.0/facp/mur/muz;
w;j<$<4=7
% Coefficients for field components on the grid cell boundary
gPT_}#_GxM
x1=(upml-i+1.5)*delta;
=B5{ 7g\
x2=(upml-i+0.5)*delta;
MIn_?r
sigma=sigfactor*(x1^(orderbc+1)-x2^(orderbc+1));
4dcm)Xr
ki=1.0+kfactor*(x1^(orderbc+1)-x2^(orderbc+1));
@!u{>!~0
facm=(2.0*epsr*epsz*ki-sigma*dt);
6@t&
facp=(2.0*epsr*epsz*ki+sigma*dt);
p)ig~kk`
C1ez(i,:,:)=facm/facp;
*YL86R+U
C1ez(ih_tot-i+1,:,:)=facm/facp;
/t`\b [
C2ez(i,:,:)=2.0*epsr*epsz*dt/facp;
yNowhh
C2ez(ih_tot-i+1,:,:)=2.0*epsr*epsz*dt/facp;
8Znr1=1
C3ey(i,:,:)=facm/facp;
J-<_e??
C3ey(ih_tot-i+1,:,:)=facm/facp;
0c`nk\vUy
C4ey(i,:,:)=1.0/facp/epsr/epsz;
Z\xnPhV
C4ey(ih_tot-i+1,:,:)=1.0/facp/epsr/epsz;
GK!@|Kk8q7
D5hx(i,:,:)=facp;
Bv!{V)$
D5hx(ih_tot-i+1,:,:)=facp;
T!ZjgCY}
D6hx(i,:,:)=facm;
Dmr*Lh~
D6hx(ih_tot-i+1,:,:)=facm;
8V 4e\q
p:5NMo
end
2l+L96
% PEC walls
AvB=/p@]
C1ez(1,:,:)=-1.0;
iC/*d
C1ez(ih_tot,:,:)=-1.0;
cv-rEHT
C2ez(1,:,:)=0.0;
lwrh4<~\,*
C2ez(ih_tot,:,:)=0.0;
2#sFY/@
C3ey(1,:,:)=-1.0;
..X _nF
C3ey(ih_tot,:,:)=-1.0;
At?|[%<`
C4ey(1,:,:)=0.0;
iw3\`,5
C4ey(ih_tot,:,:)=0.0;
X:$vP'B>
% y-varying material properties
NsP=l]
delbc=upml*delta;
CuvY^["
sigmam=-log(rmax)*epsr*epsz*cc*(orderbc+1.0)/(2.0*delbc);
PfRA\
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1.0));
P.C?/7$7Z+
kmax=1.0;
*DC/O( 0
kfactor=(kmax-1.0)/delta/(orderbc+1.0)/delbc^orderbc;
q,O_y<uw
for j=1:upml
A|S)cr8z
mL2J
% Coefficients for field components in the center of the grid cell
_uLpU4# ?
y1=(upml-j+1)*delta;
_:=\h5}8
y2=(upml-j)*delta;
?]$<Ufr
sigma=sigfactor*(y1^(orderbc+1)-y2^(orderbc+1));
s_XCKhN:
ki=1+kfactor*(y1^(orderbc+1)-y2^(orderbc+1));
&1yJrj9y
facm=(2*epsr*epsz*ki-sigma*dt);
0NGth(2
facp=(2*epsr*epsz*ki+sigma*dt);
( _6j@?u
D 5n\h5
C5ey(:,j,:)=facp;
iD G&