登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
时域有限差分法 FDTD
>
请教个UPML程序中的问题
发帖
回复
1644
阅读
8
回复
[
求助
]
请教个UPML程序中的问题
离线
yiting39
UID :24312
注册:
2009-01-08
登录:
2009-12-03
发帖:
25
等级:
仿真新人
0楼
发表于: 2009-05-10 22:39:15
我在看该3D的UPML程序时,有个地方看不懂,不知道是从哪个公式写出来的,请高人指点,非常谢谢了~
n'gfB]H[
问题是:
$`
1.sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1.0));这句的公式是对应Allen书上的(7.60a)式吗,它是怎么对应X的M次方的?
Rz)#VVYC=
2.C1ex(:,jh_bc:jh_tot-upml,:)=C1;等一系列的赋值的范围如jh_bc:jh_tot-upml是根据什么定的啊?
s)V^_@Z9
+a|4XyN
该程序如下:
*8N~Zmz
%***********************************************************************
_RmrjDk
% 3-D FDTD code with UPML absorbing boundary conditions
n)0{mDf%
%***********************************************************************
NF.SGga
%
3FdoADe{{
% Program author: Keely J. Willis, Graduate Student
1@y?OWC
% UW Computational Electromagnetics Laboratory
*+IUGR
% Director: Susan C. Hagness
7 XY C.g
% Department of Electrical and Computer Engineering
v<) }T5~r
% University of Wisconsin-Madison
FKQnz/
% 1415 Engineering Drive
@sDd:>t
% Madison, WI 53706-1691
82<L07fB
%
kjwillis@wisc.edu
ofSOy1
%
Cfj*[i4
% Copyright 2005
WO{N@f^
%
\|(;q+n?k
% This MATLAB M-file implements the finite-difference time-domain
[bp"U*!9P
% solution of Maxwell's curl equations over a three-dimensional
>#ou8}0
% Cartesian (笛卡尔)space lattice comprised of uniform cubic grid cells.
C@[:}ZGMV
%
wqyAEVea'8
% The dimensions of the computational domain are 8.2 cm
TwH(47|?Nt
% (x-direction), 3.4 cm (y-direction), and 3.2 cm (z-direction).
X;1q1X)K
% The grid is terminated with UPML absorbing boundary conditions.
*0U(nCT&m
%
U +]ab
% An electric current source comprised of two collinea(共线的)r Jz components
?YS`?Rr
% (realizing a Hertzian dipole) excites a radially propagating wave.
J kA~Ol
% The current source is located in the center of the grid. The
{T IGPK
% source waveform is a differentiated Gaussian pulse given by
MMf6QxYf
% J(t)=J0*(t-t0)*exp(-(t-t0)^2/tau^2),
Cn"N5(i
% where tau=50 ps. The FWHM spectral bandwidth of this zero-dc-
JUE>g8\b
% content pulse is approximately 7 GHz. The grid resolution
"7l}X{b
% (dx = 2 mm) was chosen to provide at least 10 samples per
\u*,~J)z
% wavelength up through 15 GHz.
d+^;kse
%
3w@)/ujn
% To execute this M-file, type "fdtd3D_UPML" at the MATLAB prompt.
HwcGbbX)
%
YMWy5 \
% This code has been tested in the following Matlab environments:
LP\ Qwj{
% Matlab version 6.1.0.450 Release 12.1 (May 18, 2001)
i{8=;
% Matlab version 6.5.1.199709 Release 13 Service Pack 1 (August 4, 2003)
O<Kr6+ -
% Matlab version 7.0.0.19920 R14 (May 6, 2004)
:!/}*B
% Matlab version 7.0.1.24704 R14 Service Pack 1 (September 13, 2004)
2vXMrh\
% Matlab version 7.0.4.365 R14 Service Pack 2 (January 29, 2005)
]oY~8HW
%
N*x gVj*
% Note: if you are using Matlab version 6.x, you may wish to make
%*uqtw8
% one or more of the following modifications to this code:
Nwc(<
% --uncomment line numbers 485 and 486
iZ:-V8{
% --comment out line numbers 552 and 561
VTHDGBU
%
!nu['6I%
%***********************************************************************
=_XcG!"
B|Omz:c
clear
e7;]+pN]J
RI`A<*>w
%***********************************************************************
O$$N{
% Fundamental constants
^_oLhNoez2
%***********************************************************************
&K4o8Qz
OT [t EqQ
cc=2.99792458e8;
w &-r
muz=4.0*pi*1.0e-7;
lA1R$
epsz=1.0/(cc*cc*muz);
i.<}X
etaz=sqrt(muz/epsz);
Y7p#K<y]9
Ik,w3 }*P*
%***********************************************************************
b,'./{c0
% Material parameters
wD<G+Y}
%***********************************************************************
Tx xc-$z
H5 -I}z
mur=1.0;
R0|X;3
epsr=1.0;
QZ`<+"a0
eta=etaz*sqrt(mur/epsr);
k X-AC5]
)SQ g
%***********************************************************************
qEpBzQ&gX6
% Grid parameters
R|vF*0)>W
%
Oe#k|
% Each grid size variable name describes the number of sampled points
pQ>V]M
% for a particular field component in the direction of that component.
T>z@;5C
% Additionally, the variable names indicate the region of the grid
ZTun{Dw{
% for which the dimension is relevant. For example, ie_tot is the
EKt-C_)U
% number of sample points of Ex along the x-axis in the total
GwvxX&P
% computational grid, and jh_bc is the number of sample points of Hy
8 jT"HZB6
% along the y-axis in the y-normal UPML regions.
LgaJp_d>9*
%
#K[ @$BY:
%***********************************************************************
/ [19ITZ
?ix,Cu@M
ie=41; % Size of main grid
nO/5X>A,Zw
je=17;
*dTw$T#
ke=16;
#4hP_Vhc
ih=ie+1;
9GEcs(A*
jh=je+1;
~\^8 ^
kh=ke+1;
2H /a&uo@n
@@$ _TaI
upml=10; % Thickness of PML boundaries
GZ e )QH
ih_bc=upml+1;
L`!sV-.
jh_bc=upml+1;
J@5 OZFMZ
kh_bc=upml+1;
{> }U>V
)CB?gW
ie_tot=ie+2*upml; % Size of total computational domain
sPw(+m*C
je_tot=je+2*upml;
F lZ]R
ke_tot=ke+2*upml;
>5j/4Ly
ih_tot=ie_tot+1;
f8j^a?d|
jh_tot=je_tot+1;
&>/nYvuq -
kh_tot=ke_tot+1;
m&\Gz*)3
\uaJw\EZ
is=round(ih_tot/2); % Location of z-directed current source
lL^7x
js=round(jh_tot/2);
<Du*Re6g
ks=round(ke_tot/2);
^?A+`1-
gV7o eZ5
%***********************************************************************
;~K($_#H
% Fundamental grid parameters
$DVy$)a!u
%***********************************************************************
p[wjHfIq
J0oR]eT}
delta=0.002;
xq{4i|d)
dt=delta*sqrt(epsr*mur)/(2.0*cc);
`+6HHtF
nmax=100;
Z\ Q7#dl
(UM+?]Qwy
%***********************************************************************
+!<`$+W
% Differentiated Gaussian pulse excitation
h;lnc|Hw
%***********************************************************************
( r O j,D
^\I$tnY`
rtau=50.0e-12;
HlO+^(eX
tau=rtau/dt;
Xu$*ZJ5w
ndelay=3*tau;
KYQ6U.%W
J0=-1.0*epsz;
l ghzd6
OU+*@2")t
%***********************************************************************
w7C=R8^
% Initialize field arrays
MnQ_]cC
%***********************************************************************
`MD/CFl4
jQDxbkIuzE
ex=zeros(ie_tot,jh_tot,kh_tot);
s6egd%r
ey=zeros(ih_tot,je_tot,kh_tot);
N3?d?+A$
ez=zeros(ih_tot,jh_tot,ke_tot);
3k/MigT
dx=zeros(ie_tot,jh_tot,kh_tot);
V1fPH;
dy=zeros(ih_tot,je_tot,kh_tot);
7%'<}u
dz=zeros(ih_tot,jh_tot,ke_tot);
bcYz?o6
qL#R XUTP
hx=zeros(ih_tot,je_tot,ke_tot);
PTP2QAt
hy=zeros(ie_tot,jh_tot,ke_tot);
~RJg.9V
hz=zeros(ie_tot,je_tot,kh_tot);
1-n0"lP~4
bx=zeros(ih_tot,je_tot,ke_tot);
H~@h #6
by=zeros(ie_tot,jh_tot,ke_tot);
fP|\1Y?CS
bz=zeros(ie_tot,je_tot,kh_tot);
b-Hn=e _
!9 F+uc5
%***********************************************************************
' 4"L;){:L
% Initialize update coefficient arrays
5J;c;PF
%***********************************************************************
x:x QXjJ
a$GKrc,z
C1ex=zeros(size(ex));
7^L&YVW
C2ex=zeros(size(ex));
lDpi1]2
C3ex=zeros(size(ex));
+R_U
C4ex=zeros(size(ex));
phdN9<Z
C5ex=zeros(size(ex));
4Y2>w
C6ex=zeros(size(ex));
@^ e@.)
Yem\`; *
C1ey=zeros(size(ey));
%F~ dmA#:
C2ey=zeros(size(ey));
(07d0 <<[
C3ey=zeros(size(ey));
,?qS#B+>
C4ey=zeros(size(ey));
_e'mG'P(
C5ey=zeros(size(ey));
*+AP}\p0F
C6ey=zeros(size(ey));
2S;zze7)
r$7rYxFR
C1ez=zeros(size(ez));
c>g%oE
C2ez=zeros(size(ez));
)&9RoW()?
C3ez=zeros(size(ez));
l0_V-|x
C4ez=zeros(size(ez));
5"Yw$DB9
C5ez=zeros(size(ez));
HL?pnT09
C6ez=zeros(size(ez));
7Tbk ti;
wB^a1=C
D1hx=zeros(size(hx));
|2# Ro*
D2hx=zeros(size(hx));
8vo} .JIl
D3hx=zeros(size(hx));
6yb<4@LOb
D4hx=zeros(size(hx));
!8g y)2
D5hx=zeros(size(hx));
NO$Nl/XM
D6hx=zeros(size(hx));
sF$m?/Kt
;w>B}v;RE
D1hy=zeros(size(hy));
!=we7vK}
D2hy=zeros(size(hy));
R<=t{vTJ5
D3hy=zeros(size(hy));
/p>[$`Aq
D4hy=zeros(size(hy));
^kq! /c3r
D5hy=zeros(size(hy));
>W<5$ .G
D6hy=zeros(size(hy));
G!\xc
El%(je,|
D1hz=zeros(size(hz));
{ SfU!
D2hz=zeros(size(hz));
a|NU)mgEI
D3hz=zeros(size(hz));
Go|65Z\`7M
D4hz=zeros(size(hz));
NEk [0
D5hz=zeros(size(hz));
3Z0\I\E
D6hz=zeros(size(hz));
0 Yp;?p^
UU/|s>F
%***********************************************************************
cF2/}m]
% Update coefficients, as described in Section 7.8.2.
?KN_J
%
*v+ fkg
% In order to simplify the update equations used in the time-stepping
0u_'(Z-^2
% loop, we implement UPML update equations throughout the entire
8'_Y=7b0Nw
% grid. In the main grid, the electric-field update coefficients of
<c#[.{A}s
% Equations 7.91a-f and the correponding magnetic field update
F'I6aE%
% coefficients extracted from Equations 7.89 and 7.90 are simplified
%vXQ Sz
% for the main grid (free space) and calculated below.
0"`skYJ@
%
rx/6x(3
%***********************************************************************
c'2ra/?k
U ~m.I
C1=1.0;
Mx"tUoU6z
C2=dt;
pB./L&h
C3=1.0;
3[0:,^a
C4=1.0/2.0/epsr/epsr/epsz/epsz;
fW _.
C5=2.0*epsr*epsz;
E` |qFG<
C6=2.0*epsr*epsz;
q4{ t H
u W T[6R
D1=1.0;
ZTZE_[
D2=dt;
e?>suIB
D3=1.0;
]_?y[@ZP
D4=1.0/2.0/epsr/epsz/mur/muz;
TE~@Bl;{?c
D5=2.0*epsr*epsz;
KfNXX>'
D6=2.0*epsr*epsz;
GN0'-z6Uy
w.f[)
%***********************************************************************
C)w*aU,(
% Initialize main grid update coefficients
YC'~8\x3z
%***********************************************************************
OxZ:5ps
#pfosC[
C1ex(:,jh_bc:jh_tot-upml,:)=C1;
In&vh9Lw
C2ex(:,jh_bc:jh_tot-upml,:)=C2;
e=jO_[
C3ex(:,:,kh_bc:kh_tot-upml)=C3;
$}$@)!-
C4ex(:,:,kh_bc:kh_tot-upml)=C4;
%Qq)=J<H;
C5ex(ih_bc:ie_tot-upml,:,:)=C5;
R{_IrYk
C6ex(ih_bc:ie_tot-upml,:,:)=C6;
=&b[V"
}3 }=tN5
C1ey(:,:,kh_bc:kh_tot-upml)=C1;
w C"%b#(}
C2ey(:,:,kh_bc:kh_tot-upml)=C2;
_=5ZB_I
C3ey(ih_bc:ih_tot-upml,:,:)=C3;
t^hkGYj!2
C4ey(ih_bc:ih_tot-upml,:,:)=C4;
YqgW8EM
C5ey(:,jh_bc:je_tot-upml,:)=C5;
vEGK{rMA
C6ey(:,jh_bc:je_tot-upml,:)=C6;
pZxL?N!
<.ky1aex7
C1ez(ih_bc:ih_tot-upml,:,:)=C1;
7krA+/Qr(
C2ez(ih_bc:ih_tot-upml,:,:)=C2;
>gJWp@6V
C3ez(:,jh_bc:jh_tot-upml,:)=C3;
^~l<N@
C4ez(:,jh_bc:jh_tot-upml,:)=C4;
@_3$(*n$~
C5ez(:,:,kh_bc:ke_tot-upml)=C5;
L ]c9
C6ez(:,:,kh_bc:ke_tot-upml)=C6;
4)I#[&f
L:-lqag!
D1hx(:,jh_bc:je_tot-upml,:)=D1;
V-jL`(JF%
D2hx(:,jh_bc:je_tot-upml,:)=D2;
]6 wi
D3hx(:,:,kh_bc:ke_tot-upml)=D3;
?miM15XI
D4hx(:,:,kh_bc:ke_tot-upml)=D4;
vuBA&j0C
D5hx(ih_bc:ih_tot-upml,:,:)=D5;
_ GSw\r
D6hx(ih_bc:ih_tot-upml,:,:)=D6;
#9OP.4
e%6{P
D1hy(:,:,kh_bc:ke_tot-upml)=D1;
@XC97kGWp
D2hy(:,:,kh_bc:ke_tot-upml)=D2;
H%]ch6C
D3hy(ih_bc:ie_tot-upml,:,:)=D3;
9DX3]Z\7X
D4hy(ih_bc:ie_tot-upml,:,:)=D4;
kqw? X{
D5hy(:,jh_bc:jh_tot-upml,:)=D5;
q;.]e#wvh
D6hy(:,jh_bc:jh_tot-upml,:)=D6;
[[Z>(d$8
AHJ;>"]
D1hz(ih_bc:ie_tot-upml,:,:)=D1;
%SCu29km
D2hz(ih_bc:ie_tot-upml,:,:)=D2;
HU9y{H
D3hz(:,jh_bc:je_tot-upml,:)=D3;
+`-a*U94
D4hz(:,jh_bc:je_tot-upml,:)=D4;
JB@VP{
D5hz(:,:,kh_bc:kh_tot-upml)=D5;
'OCo1|iK~
D6hz(:,:,kh_bc:kh_tot-upml)=D6;
;!?K.,N:N
8 -A7
%***********************************************************************
G`"Cqs<
% Fill in PML regions
kB#vh
%
4sjr\9IDC
% PML theory describes a continuous grading of the material properties
^<0 NIu}
% over the PML region. In the FDTD grid it is necessary to discretize
PBtU4)
% the grading by averaging the material properties over a grid cell
~b0qrjF;O
% width centered on each field component. As an example of the
J_|x^
% implementation of this averaging, we take the integral of the
Xf9%A2 iB
% continuous sigma(x) in the PML region
"~C#DZwt{
%
@~3c"q;i7
% sigma_i = integral(sigma(x))/delta
bq-\'h f<
%
(14kR
% where the integral is over a single grid cell width in x, and is
;NE/!!
% bounded by x1 and x2. Applying this to the polynomial grading of
<t% A)L%
% Equation 7.60a produces
-FV'%X$i
%
u V7Hsg9l
% sigma_i = (x2^(m+1)-x1^(m+1))*sigmam/(delta*(m+1)*d^m)
tL{~O=
%
9'g{<(R]
% where sigmam is the maximum value of sigma as described by Equation
!U:s.^{
% 7.62.
@l Gn G
%
]xEE7H]\h
% The definitions of x1 and x2 depend on the position of the field
*J5RueUG
% component within the grid cell. We have either
~79Qg{+]N
%
+Q31K7G r
% x1 = (i-0.5)*delta, x2 = (i+0.5)*delta
30+l0\1
%
P1 stL,
% or
WG} CPkj
%
^]&{"!
% x1 = (i)*delta, x2 = (i+1)*delta
"B3:m-'
%
}TJ|d=
% where i varies over the PML region.
9X9zIh]JV
%
kTWg31]~
%***********************************************************************
u7Y< ~
y4We}/-<
rmax=exp(-16); %desired reflection error, designated as R(0) in Equation 7.62
4!vUksM
=@=R)C4f*
orderbc=4; %order of the polynomial grading, designated as m in Equation 7.60a,b
q- (NZno
Z[u,1l.T
% x-varying material properties
z.&%>%TPP
delbc=upml*delta;
t<,p-TM]
sigmam=-log(rmax)*(orderbc+1.0)/(2.0*eta*delbc);
lFGxW 5
%sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1.0));
UMQW#$~C{g
E:=KH\2f
kmax=1;
5'Jh2r
kfactor=(kmax-1.0)/delta/(orderbc+1.0)/delbc^orderbc;
x9A ZS#e)[
Juqn X
for i=1:upml
'. Hp*9R
#UCQiQfP
% Coefficients for field components in the center of the grid cell
DN':-PK
x1=(upml-i+1)*delta;
'8kjTf#g<l
x2=(upml-i)*delta;
Gj8[*3d
sigma=sigfactor*(x1^(orderbc+1)-x2^(orderbc+1));
wn|@D<
ki=1+kfactor*(x1^(orderbc+1)-x2^(orderbc+1));
N 3p 7 0
facm=(2*epsr*epsz*ki-sigma*dt);
nvo1+W(%
facp=(2*epsr*epsz*ki+sigma*dt);
1[g!^5W
:*:fun
C5ex(i,:,:)=facp;
p]z54 ~
C5ex(ie_tot-i+1,:,:)=facp;
*jw$d8q2
C6ex(i,:,:)=facm;
XqS*;Zj0
C6ex(ie_tot-i+1,:,:)=facm;
Cmx2/N
D1hz(i,:,:)=facm/facp;
np\2sa`
D1hz(ie_tot-i+1,:,:)=facm/facp;
m_02"'
D2hz(i,:,:)=2.0*epsr*epsz*dt/facp;
8t:h
D2hz(ie_tot-i+1,:,:)=2.0*epsr*epsz*dt/facp;
qbq<O %g=
D3hy(i,:,:)=facm/facp;
^@lg5d3F
D3hy(ie_tot-i+1,:,:)=facm/facp;
ivz?-X4]
D4hy(i,:,:)=1.0/facp/mur/muz;
>"g<-!p@
D4hy(ie_tot-i+1,:,:)=1.0/facp/mur/muz;
K6*UFO4}i
tr9Y1vxo{
% Coefficients for field components on the grid cell boundary
]!G>8Rc
x1=(upml-i+1.5)*delta;
&Z;8J @
x2=(upml-i+0.5)*delta;
L_1_y, 0N
sigma=sigfactor*(x1^(orderbc+1)-x2^(orderbc+1));
*a,.E6C*
ki=1.0+kfactor*(x1^(orderbc+1)-x2^(orderbc+1));
vs)I pV(
facm=(2.0*epsr*epsz*ki-sigma*dt);
s/vOxGc
facp=(2.0*epsr*epsz*ki+sigma*dt);
3J~kiy.nfW
ZQ' z
C1ez(i,:,:)=facm/facp;
3r:)\E+Q_
C1ez(ih_tot-i+1,:,:)=facm/facp;
ro^6:w3O^
C2ez(i,:,:)=2.0*epsr*epsz*dt/facp;
3k*:B~1
C2ez(ih_tot-i+1,:,:)=2.0*epsr*epsz*dt/facp;
6Y_O^f
C3ey(i,:,:)=facm/facp;
xT?} wF
C3ey(ih_tot-i+1,:,:)=facm/facp;
Xe3z6
C4ey(i,:,:)=1.0/facp/epsr/epsz;
gq_7_Y/
C4ey(ih_tot-i+1,:,:)=1.0/facp/epsr/epsz;
DT"Zq
D5hx(i,:,:)=facp;
8<wuH#2<y
D5hx(ih_tot-i+1,:,:)=facp;
->2wrOH|H
D6hx(i,:,:)=facm;
PT@e),{~o9
D6hx(ih_tot-i+1,:,:)=facm;
+<WRB\W
|5B,cB_
end
P,;b'-5C
pebx#}]p-
% PEC walls
*tfDXQ^mN
C1ez(1,:,:)=-1.0;
1;kG[z=A
C1ez(ih_tot,:,:)=-1.0;
a$zm/
C2ez(1,:,:)=0.0;
l&??2VO/t
C2ez(ih_tot,:,:)=0.0;
Ms'TC;&PS
C3ey(1,:,:)=-1.0;
T19rbL_
C3ey(ih_tot,:,:)=-1.0;
`I vw`} L
C4ey(1,:,:)=0.0;
`TD%M`a
C4ey(ih_tot,:,:)=0.0;
JlDDM %
Ik-E4pxKo
% y-varying material properties
t#pqXY/;D
delbc=upml*delta;
Fr3d#kVR
sigmam=-log(rmax)*epsr*epsz*cc*(orderbc+1.0)/(2.0*delbc);
7|M $W(P
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1.0));
*- IlF]
kmax=1.0;
R!k<l<9q
kfactor=(kmax-1.0)/delta/(orderbc+1.0)/delbc^orderbc;
]AZ\5C-J
:7Z\3_D/
for j=1:upml
[zTYiNa
r5!x,{E6
% Coefficients for field components in the center of the grid cell
gUH'DS]{
y1=(upml-j+1)*delta;
N~S[xS?
y2=(upml-j)*delta;
EOPS? @
sigma=sigfactor*(y1^(orderbc+1)-y2^(orderbc+1));
E7NbPNd
ki=1+kfactor*(y1^(orderbc+1)-y2^(orderbc+1));
Fwx~ ~"I
facm=(2*epsr*epsz*ki-sigma*dt);
7hN6IP*so
facp=(2*epsr*epsz*ki+sigma*dt);
MpIw^a3(r
,KhMzE8_a
C5ey(:,j,:)=facp;
?F87C[o
C5ey(:,je_tot-j+1,:)=facp;
(\mulj
C6ey(:,j,:)=facm;
s 9|a2/{
C6ey(:,je_tot-j+1,:)=facm;
|IX` (
D1hx(:,j,:)=facm/facp;
,;cel^.b
D1hx(:,je_tot-j+1,:)=facm/facp;
ELrZ8&5G
D2hx(:,j,:)=2*epsr*epsz*dt/facp;
"gbnLKs
D2hx(:,je_tot-j+1,:)=2*epsr*epsz*dt/facp;
4&oXy,8LC
D3hz(:,j,:)=facm/facp;
o(d_uJOB
D3hz(:,je_tot-j+1,:)=facm/facp;
VU`z|nBW@
D4hz(:,j,:)=1/facp/mur/muz;
> 0Twr
D4hz(:,je_tot-j+1,:)=1/facp/mur/muz;
2 ]DCF
9 yW~79n
% Coefficients for field components on the grid cell boundary
;Up'~BP(
y1=(upml-j+1.5)*delta;
V3 _b!
y2=(upml-j+0.5)*delta;
6a%:zgkOpu
sigma=sigfactor*(y1^(orderbc+1)-y2^(orderbc+1));
2c"N-c&A
ki=1+kfactor*(y1^(orderbc+1)-y2^(orderbc+1));
6}i&6@Snq?
facm=(2*epsr*epsz*ki-sigma*dt);
przubMt
facp=(2*epsr*epsz*ki+sigma*dt);
"wF ?Hamz
Cwsoz
C1ex(:,j,:)=facm/facp;
(U(/C5'
C1ex(:,jh_tot-j+1,:)=facm/facp;
fY%M=,t3c
C2ex(:,j,:)=2*epsr*epsz*dt/facp;
3KZ y H
C2ex(:,jh_tot-j+1,:)=2*epsr*epsz*dt/facp;
Q@e*$<3
C3ez(:,j,:)=facm/facp;
N0K>lL=
C3ez(:,jh_tot-j+1,:)=facm/facp;
)+w/\~@
C4ez(:,j,:)=1/facp/epsr/epsz;
qJX+[PJ
C4ez(:,jh_tot-j+1,:)=1/facp/epsr/epsz;
~N{_N95!2@
D5hy(:,j,:)=facp;
$d2kHT
D5hy(:,jh_tot-j+1,:)=facp;
;h,R?mU
D6hy(:,j,:)=facm;
}c35FM,
D6hy(:,jh_tot-j+1,:)=facm;
18O@ 1M
z{`6#
end
@[5_C?2
Mm5U`mB
% PEC walls
OK M\"A4
C1ex(:,1,:)=-1;
> h,y\uV1
C1ex(:,jh_tot,:)=-1;
OAW=Pozr9
C2ex(:,1,:)=0;
y|e2j&m
C2ex(:,jh_tot,:)=0;
D%;wVnUw
C3ez(:,1,:)=-1;
4V228>9w
C3ez(:,jh_tot,:)=-1;
CQBT::
C4ez(:,1,:)=0;
1#>&p%P!
C4ez(:,jh_tot,:)=0;
c_qcb7<~.
1Nl&4 YLO
% z-varying material properties
"GwWu-GS
delbc=upml*delta;
@Xq&t}*8
sigmam=-log(rmax)*epsr*epsz*cc*(orderbc+1)/(2*delbc);
@)OnIQN~
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1));
nIV.9#~&
%kmax=1;
)BF \!sTn
%kfactor=(kmax-1)/delta/(orderbc+1)/delbc^orderbc;
pYLY;qkG"
kfactor=0;
'0R/6Z|/Y
2AXF$YjY
for k=1:upml
y$j1?7
;Na8_}
% Coefficients for field components in the center of the grid cell
` $.X [\*U
z1=(upml-k+1)*delta;
:cXIO
z2=(upml-k)*delta;
[j:}=:feQ
sigma=sigfactor*(z1^(orderbc+1)-z2^(orderbc+1));
f[JI/H>
ki=1+kfactor*(z1^(orderbc+1)-z2^(orderbc+1));
FE8+E\ U?
facm=(2*epsr*epsz*ki-sigma*dt);
C!ZI&cD9
facp=(2*epsr*epsz*ki+sigma*dt);
C(F1VS
4Q$j]U&b
C5ez(:,:,k)=facp;
FG>;P]mvp
C5ez(:,:,ke_tot-k+1)=facp;
I;kf #nvao
C6ez(:,:,k)=facm;
*=$[}!YG
C6ez(:,:,ke_tot-k+1)=facm;
%;pD8WgJA
D1hy(:,:,k)=facm/facp;
JHvFIo
D1hy(:,:,ke_tot-k+1)=facm/facp;
o{{:|%m3Q
D2hy(:,:,k)=2*epsr*epsz*dt/facp;
'?{0z!!
D2hy(:,:,ke_tot-k+1)=2*epsr*epsz*dt/facp;
'GV&]
D3hx(:,:,k)=facm/facp;
:S QDqG
D3hx(:,:,ke_tot-k+1)=facm/facp;
!y>lOw})Q
D4hx(:,:,k)=1/facp/mur/muz;
Exep+x-
D4hx(:,:,ke_tot-k+1)=1/facp/mur/muz;
4NpHX+=P
x1 ;rb8
% Coefficients for field components on the grid cell boundary
%r M-"6Q
z1=(upml-k+1.5)*delta;
wUru1_zjO
z2=(upml-k+0.5)*delta;
}yx=(+jP
sigma=sigfactor*(z1^(orderbc+1)-z2^(orderbc+1));
xHEVR!&c4
ki=1+kfactor*(z1^(orderbc+1)-z2^(orderbc+1));
ur/Oc24i1n
facm=(2*epsr*epsz*ki-sigma*dt);
j}|N^A_ S
facp=(2*epsr*epsz*ki+sigma*dt);
o5N]((9
&Q'\WA'
C1ey(:,:,k)=facm/facp;
:k WZSN8.D
C1ey(:,:,kh_tot-k+1)=facm/facp;
\g~ws9'~
C2ey(:,:,k)=2*epsr*epsz*dt/facp;
"C:rTIH
C2ey(:,:,kh_tot-k+1)=2*epsr*epsz*dt/facp;
$"Y3mD}?L
C3ex(:,:,k)=facm/facp;
\3%W_vU_
C3ex(:,:,kh_tot-k+1)=facm/facp;
ZhGh{D[,
C4ex(:,:,k)=1/facp/epsr/epsz;
tv 4s12&
C4ex(:,:,kh_tot-k+1)=1/facp/epsr/epsz;
a);O3N/*I
D5hz(:,:,k)=facp;
:0M'=~[
D5hz(:,:,kh_tot-k+1)=facp;
?gd'M_-J,
D6hz(:,:,k)=facm;
f*{M3"$E
D6hz(:,:,kh_tot-k+1)=facm;
]~?S~l%
**T:eI+
end
`xISkW4 %
2-8YSHlh
% PEC walls
*4|9&PNLE
C1ey(:,:,1)=-1;
}Q`/K;yq
C1ey(:,:,kh_tot)=-1;
vx04h ~
C2ey(:,:,1)=0;
/lf\ E=
C2ey(:,:,kh_tot)=0;
MS{Hz,I,
C3ex(:,:,1)=-1;
b%3Q$wIJ6
C3ex(:,:,kh_tot)=-1;
\# 7@a74
C4ex(:,:,1)=0;
o{9?:*?7
C4ex(:,:,kh_tot)=0;
eZynF<i
nHI(V-E2:H
%figure
a4yOe*Ak,F
%set(gcf,'DoubleBuffer','on')
pZu?V"R
@AvM
%***********************************************************************
S8*^ss>?^R
% Begin time stepping loop
k!Vn4?B"k
%***********************************************************************
N1YgYL
Q8 -3RgAw
for n=1:nmax
nURvy}<r
,"@w>WL<9
% Update magnetic field
~J%R-{U9
bstore=bx;
"w;08TX8
bx(2:ie_tot,:,:)=D1hx(2:ie_tot,:,:).* bx(2:ie_tot,:,:)-...
:0B |<~lX
D2hx(2:ie_tot,:,:).*((ez(2:ie_tot,2:jh_tot,:)-ez(2:ie_tot,1:je_tot,:))-...
53bM+
(ey(2:ie_tot,:,2:kh_tot)-ey(2:ie_tot,:,1:ke_tot)))./delta;
/r>IV`n{
hx(2:ie_tot,:,:)= D3hx(2:ie_tot,:,:).*hx(2:ie_tot,:,:)+...
e-~hS6p(
D4hx(2:ie_tot,:,:).*(D5hx(2:ie_tot,:,:).*bx(2:ie_tot,:,:)-...
1pWk9Xuh
D6hx(2:ie_tot,:,:).*bstore(2:ie_tot,:,:));
t G]N*%@
bstore=by;
*]FgfttES
by(:,2:je_tot,:)=D1hy(:,2:je_tot,:).* by(:,2:je_tot,:)-...
'n>K^rA
D2hy(:,2:je_tot,:).*((ex(:,2:je_tot,2:kh_tot)-ex(:,2:je_tot,1:ke_tot))-...
~@xT]D!BQ
(ez(2:ih_tot,2:je_tot,:)-ez(1:ie_tot,2:je_tot,:)))./delta;
Mg#`t$u
hy(:,2:je_tot,:)= D3hy(:,2:je_tot,:).*hy(:,2:je_tot,:)+...
]AFj&CteZ/
D4hy(:,2:je_tot,:).*(D5hy(:,2:je_tot,:).*by(:,2:je_tot,:)-...
1W*V2`0>
D6hy(:,2:je_tot,:).*bstore(:,2:je_tot,:));
l<$rqz3D
bstore=bz;
vZ:G8K)o(
bz(:,:,2:ke_tot)=D1hz(:,:,2:ke_tot).* bz(:,:,2:ke_tot)-...
d "2wO[
D2hz(:,:,2:ke_tot).*((ey(2:ih_tot,:,2:ke_tot)-ey(1:ie_tot,:,2:ke_tot))-...
IS-}:~Pi
(ex(:,2:jh_tot,2:ke_tot)-ex(:,1:je_tot,2:ke_tot)))./delta;
\'[3^/('
hz(:,:,2:ke_tot)= D3hz(:,:,2:ke_tot).*hz(:,:,2:ke_tot)+...
'^hsH1
D4hz(:,:,2:ke_tot).*(D5hz(:,:,2:ke_tot).*bz(:,:,2:ke_tot)-...
.H ,pO#{;
D6hz(:,:,2:ke_tot).*bstore(:,:,2:ke_tot));
YQN.Ohtv*F
b([:,T7
% Update electric field
:b"=KQ
dstore=dx;
w"q-#,37j
dx(:,2:je_tot,2:ke_tot)=C1ex(:,2:je_tot,2:ke_tot).* dx(:,2:je_tot,2:ke_tot)+...
1JIG+ZN md
C2ex(:,2:je_tot,2:ke_tot).*((hz(:,2:je_tot,2:ke_tot)-hz(:,1:je_tot-1,2:ke_tot))-...
7`Qde!+C
(hy(:,2:je_tot,2:ke_tot)-hy(:,2:je_tot,1:ke_tot-1)))./delta;
<BZ_ (H
ex(:,2:je_tot,2:ke_tot)=C3ex(:,2:je_tot,2:ke_tot).*ex(:,2:je_tot,2:ke_tot)+...
|B 9t-
C4ex(:,2:je_tot,2:ke_tot).*(C5ex(:,2:je_tot,2:ke_tot).*dx(:,2:je_tot,2:ke_tot)-...
jh>N_cp
C6ex(:,2:je_tot,2:ke_tot).*dstore(:,2:je_tot,2:ke_tot));
pV8[l) J
dstore=dy;
5xhM0(
dy(2:ie_tot,:,2:ke_tot)=C1ey(2:ie_tot,:,2:ke_tot).* dy(2:ie_tot,:,2:ke_tot)+...
7kdeYr~<1
C2ey(2:ie_tot,:,2:ke_tot).*((hx(2:ie_tot,:,2:ke_tot)-hx(2:ie_tot,:,1:ke_tot-1))-...
Cm^Ylp
(hz(2:ie_tot,:,2:ke_tot)-hz(1:ie_tot-1,:,2:ke_tot)))./delta;
HB%K|&!+
ey(2:ie_tot,:,2:ke_tot)=C3ey(2:ie_tot,:,2:ke_tot).*ey(2:ie_tot,:,2:ke_tot)+...
g&Z"_7L~
C4ey(2:ie_tot,:,2:ke_tot).*(C5ey(2:ie_tot,:,2:ke_tot).*dy(2:ie_tot,:,2:ke_tot)-...
TS1pR"6l
C6ey(2:ie_tot,:,2:ke_tot).*dstore(2:ie_tot,:,2:ke_tot));
>Q&CgGpW$
dstore=dz;
-4 8`#"xy
dz(2:ie_tot ..
: -E,
%z30=?VL
未注册仅能浏览
部分内容
,查看
全部内容及附件
请先
登录
或
注册
共
条评分
离线
wq_463
UID :20925
注册:
2008-11-06
登录:
2021-04-22
发帖:
227
等级:
仿真三级
1楼
发表于: 2009-05-11 10:08:24
你的第一个问题,我当时也看了半天,后来对照着taflove的2D程序发现,PML的设置也是这么写的,后来我就默认了,具体怎么弄我想期待高人的解答
XJc ,uj7
你的第二问题你可以参考herosward师兄翻译的tafloveUPML章节,论坛有你可以去下载,根据UPML的递推公式,c1ex这些都是公式的参数,我们已c1ex为例:
sp^Wo7&g
c1ex=(2*epsr*ky-sigma*dt)/(2*epsr*ky+sigma*dt)
UAdz-)$
2R\+}
你可以看到这个参数只跟y方向的设置有关,于x,z方向的网格设置无关,你初始化总场的系数,当然要把y方向范围设置成总场的范围,c1ex(:,jh_bc:jh_tot-upml,:)=c1中jh_bc:jh_tot-upml就是y方向总场的范围
7"#f!.E
希望能对你有所帮助,同时期待高手的补充
共
1
条评分
gwzhao
技术分
+1
积极参与讨论+技术分 论坛感谢您的参与
2009-05-11
离线
funnyhaha
UID :16429
注册:
2008-08-05
登录:
2015-03-17
发帖:
173
等级:
积极交流四级
2楼
发表于: 2009-05-11 23:34:45
关于第一个问题的,采用7.60作为PML的电导系数变量的设计,\sigma (x_i) 不仅仅是在x_i点上衡量7.60.而是对\sigma(x)在一个胞上做积分,在除以胞的边长。如果你对7.60做积分,会得到TAFLOVE用的表达式。
共
1
条评分
gwzhao
技术分
+1
积极参与讨论+技术分 论坛感谢您的参与
2009-05-12
离线
yiting39
UID :24312
注册:
2009-01-08
登录:
2009-12-03
发帖:
25
等级:
仿真新人
3楼
发表于: 2009-05-12 20:20:46
回 1楼(wq_463) 的帖子
恩,看懂了,谢谢指点~
共
条评分
离线
yiting39
UID :24312
注册:
2009-01-08
登录:
2009-12-03
发帖:
25
等级:
仿真新人
4楼
发表于: 2009-05-12 20:21:27
回 2楼(funnyhaha) 的帖子
明白了,可是他用这种做法是为了更精确点吗?
共
条评分
离线
xiahuiz
UID :20367
注册:
2008-10-29
登录:
2012-04-07
发帖:
30
等级:
仿真一级
5楼
发表于: 2009-05-18 15:44:15
回 4楼(yiting39) 的帖子
可能是尽量匀化sigma从而减少数值上的反射吧
共
1
条评分
gwzhao
技术分
+1
积极参与讨论+技术分 论坛感谢您的参与
2009-05-18
离线
rift
UID :6229
注册:
2007-11-27
登录:
2025-08-14
发帖:
92
等级:
仿真三级
6楼
发表于: 2009-09-13 11:10:42
呵呵,发现一个相同的问题
%\I.DEYH
没看清帖子,重新编辑,删掉
共
条评分
离线
inter
UID :42650
注册:
2009-09-28
登录:
2020-04-23
发帖:
120
等级:
仿真二级
7楼
发表于: 2010-04-22 10:17:04
kmax=1; 4K% YS
f_'"KF[%
kfactor=(kmax-1.0)/delta/(orderbc+1.0)/delbc^orderbc; 5 Ep 我觉得这里好像没有必要啊.不是一直为0吗,请指教!
共
条评分
我觉得我什么都不懂!
离线
xiaoyuan
UID :53338
注册:
2010-02-28
登录:
2015-12-05
发帖:
156
等级:
仿真二级
8楼
发表于: 2010-07-20 08:08:38
回 1楼(wq_463) 的帖子
其实我觉得第一个问题,完全可以这么写,
I4:rie\hjC
C1ex(:,:,:)=C1;
Wl TpX`
C2ex(:,:,:)=C2;
WG\Q5k4Ba
C3ex(:,:,:)=C3;
07Y_^d
C4ex(:,:,:)=C4;
i'iO H|s
C5ex(:,:,:)=C5;
//tT8HX
C6ex(:,:,:)=C6;
-;ER`Jqs,
C7ex(:,:,:)=C7;
z L8J`W
C8ex(:,:,:)=C8;
Y{j7Q4{
不会影响结果,这样写还快速,不用去考虑哪里是PML,哪里是主机算区域。因为后面还是要给部分重新赋值,我先赋值了也没关系,后面会覆盖。
共
条评分
发帖
回复