登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
时域有限差分法 FDTD
>
请教个UPML程序中的问题
发帖
回复
1645
阅读
8
回复
[
求助
]
请教个UPML程序中的问题
离线
yiting39
UID :24312
注册:
2009-01-08
登录:
2009-12-03
发帖:
25
等级:
仿真新人
0楼
发表于: 2009-05-10 22:39:15
我在看该3D的UPML程序时,有个地方看不懂,不知道是从哪个公式写出来的,请高人指点,非常谢谢了~
v2B0q4*BS?
问题是:
9~p[
1.sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1.0));这句的公式是对应Allen书上的(7.60a)式吗,它是怎么对应X的M次方的?
L<ue$'
2.C1ex(:,jh_bc:jh_tot-upml,:)=C1;等一系列的赋值的范围如jh_bc:jh_tot-upml是根据什么定的啊?
Dp)=0<$y
!HnXXVW
该程序如下:
7R6ry(6N
%***********************************************************************
A-ZN F4
% 3-D FDTD code with UPML absorbing boundary conditions
Dpl A?
%***********************************************************************
/ro=?QYb
%
U56G.
% Program author: Keely J. Willis, Graduate Student
S/9DtXQ
% UW Computational Electromagnetics Laboratory
+VO-oFE |
% Director: Susan C. Hagness
yXHUJgjl/
% Department of Electrical and Computer Engineering
2/"u5
% University of Wisconsin-Madison
(NF~Ck$#q
% 1415 Engineering Drive
G+X Sfr
% Madison, WI 53706-1691
";3zXk[#
%
kjwillis@wisc.edu
%-c*C $
%
hw= Ft4L
% Copyright 2005
I'uSp-Sfy
%
2E}*v5b,
% This MATLAB M-file implements the finite-difference time-domain
VXR>]HUF
% solution of Maxwell's curl equations over a three-dimensional
;[M}MFc/`
% Cartesian (笛卡尔)space lattice comprised of uniform cubic grid cells.
BT}!W`
%
hRUhX[
% The dimensions of the computational domain are 8.2 cm
#,":vr
% (x-direction), 3.4 cm (y-direction), and 3.2 cm (z-direction).
C~o7X^[R\
% The grid is terminated with UPML absorbing boundary conditions.
W g02 A\
%
7f0lQ
% An electric current source comprised of two collinea(共线的)r Jz components
;#vKi0V7
% (realizing a Hertzian dipole) excites a radially propagating wave.
vb<oi&X
% The current source is located in the center of the grid. The
BYVY)<v/
% source waveform is a differentiated Gaussian pulse given by
uVJDne,R
% J(t)=J0*(t-t0)*exp(-(t-t0)^2/tau^2),
FaDjLo2'o
% where tau=50 ps. The FWHM spectral bandwidth of this zero-dc-
^eo|P~w g
% content pulse is approximately 7 GHz. The grid resolution
J&.{7YF
% (dx = 2 mm) was chosen to provide at least 10 samples per
3|'>`!hb
% wavelength up through 15 GHz.
C|}iCB
%
Hn5|B 3vN
% To execute this M-file, type "fdtd3D_UPML" at the MATLAB prompt.
#a'Ex=%rM
%
Gn ~6X-l
% This code has been tested in the following Matlab environments:
G 8g<>d{j
% Matlab version 6.1.0.450 Release 12.1 (May 18, 2001)
'VzP};
% Matlab version 6.5.1.199709 Release 13 Service Pack 1 (August 4, 2003)
kXi6lh
% Matlab version 7.0.0.19920 R14 (May 6, 2004)
kBD>-5Sn_T
% Matlab version 7.0.1.24704 R14 Service Pack 1 (September 13, 2004)
j4|N-:
% Matlab version 7.0.4.365 R14 Service Pack 2 (January 29, 2005)
inh=WUEW
%
MP_ ~<Q
% Note: if you are using Matlab version 6.x, you may wish to make
05b_)&4R
% one or more of the following modifications to this code:
<vONmE a
% --uncomment line numbers 485 and 486
6W]9$n\"?
% --comment out line numbers 552 and 561
+@p% p
%
i}.&0Fp
%***********************************************************************
;" dV"W
i36eBjT
clear
i{`FmrPO~
I%sFqh>
%***********************************************************************
!4XOy B
% Fundamental constants
+l9!Fl{MK\
%***********************************************************************
pe] A5\4c
:h\Q;?
cc=2.99792458e8;
:,'wVS8"]
muz=4.0*pi*1.0e-7;
E4|jOz^j4\
epsz=1.0/(cc*cc*muz);
nxWY7hU
etaz=sqrt(muz/epsz);
a@@)6FM
9~]~#Uj
%***********************************************************************
NQ(1
% Material parameters
]n_ k`
%***********************************************************************
psg)*'r
BJM.iXU)[
mur=1.0;
k1{K*O$e
epsr=1.0;
Ju96#v+:
eta=etaz*sqrt(mur/epsr);
g#Sl %Y
/aZ+T5O
%***********************************************************************
1(I6.BHW
% Grid parameters
Y }$/e
%
RS)tO0
% Each grid size variable name describes the number of sampled points
a yCY~=i
% for a particular field component in the direction of that component.
9Iwe2lu
% Additionally, the variable names indicate the region of the grid
pTPi@SBaP{
% for which the dimension is relevant. For example, ie_tot is the
Jk7|{W\OA
% number of sample points of Ex along the x-axis in the total
bdC8zDD
% computational grid, and jh_bc is the number of sample points of Hy
[5G6VNh=
% along the y-axis in the y-normal UPML regions.
DW5Y@;[
%
m[~V/N3
%***********************************************************************
y9q8i(E0
S- pV_Ff
ie=41; % Size of main grid
oSyyd
je=17;
/& Jan:
ke=16;
*h!28Ya(~
ih=ie+1;
U+:m4a
jh=je+1;
r'^Hg/Jzt
kh=ke+1;
pEBM3r!X
o4m\~as)Y
upml=10; % Thickness of PML boundaries
k5:G-BQ:
ih_bc=upml+1;
%?}33yV
jh_bc=upml+1;
OSs&r$
kh_bc=upml+1;
LhOa{1SY
B@&4i?yJ
ie_tot=ie+2*upml; % Size of total computational domain
_jLL_GD
je_tot=je+2*upml;
WY?[,_4U
ke_tot=ke+2*upml;
t&H?\)!4
ih_tot=ie_tot+1;
$c0h.t
jh_tot=je_tot+1;
7gj4j^a^]{
kh_tot=ke_tot+1;
}+.}J
wQ^EYKD
is=round(ih_tot/2); % Location of z-directed current source
\fG#7_wt
js=round(jh_tot/2);
';3{T:I
ks=round(ke_tot/2);
"e.jZcN*
cAY: AtD
%***********************************************************************
(7*%K&x
% Fundamental grid parameters
F5P[dp-`1
%***********************************************************************
>,F bX8Zz
B:'J`M"N
delta=0.002;
A#.edVj.g4
dt=delta*sqrt(epsr*mur)/(2.0*cc);
@ ;*Ksy@1O
nmax=100;
=/s>Q l
h"X;3b^ m
%***********************************************************************
,?>s>bHV
% Differentiated Gaussian pulse excitation
,]9P{k]O
%***********************************************************************
WI-&x '
?[@J8
rtau=50.0e-12;
ZrPbl"`7
tau=rtau/dt;
K#6P}tf
ndelay=3*tau;
o /j*d3
J0=-1.0*epsz;
w>pq+og&
6 :b!F
%***********************************************************************
jrr EAp
% Initialize field arrays
w65K[l;2
%***********************************************************************
F*IzQ(#HW
)J2mM
ex=zeros(ie_tot,jh_tot,kh_tot);
B2>H_dmQ
ey=zeros(ih_tot,je_tot,kh_tot);
&]`(v}`]
ez=zeros(ih_tot,jh_tot,ke_tot);
\.MR""@y`{
dx=zeros(ie_tot,jh_tot,kh_tot);
,:%CB"J
dy=zeros(ih_tot,je_tot,kh_tot);
"I3@m%qv
dz=zeros(ih_tot,jh_tot,ke_tot);
U{2BVqM
OLyf8&AU@
hx=zeros(ih_tot,je_tot,ke_tot);
[@VP?74
hy=zeros(ie_tot,jh_tot,ke_tot);
;_c;0)
hz=zeros(ie_tot,je_tot,kh_tot);
\k .{-nh
bx=zeros(ih_tot,je_tot,ke_tot);
yA)/Q Yge
by=zeros(ie_tot,jh_tot,ke_tot);
'(U-(wTC'/
bz=zeros(ie_tot,je_tot,kh_tot);
_zY#U9
>0/i[k-dk
%***********************************************************************
]{3)^axW;
% Initialize update coefficient arrays
EMY/~bQW
%***********************************************************************
24 [+pu
4 ezEW|S
C1ex=zeros(size(ex));
4{y)TZ
C2ex=zeros(size(ex));
q]T1dz?
C3ex=zeros(size(ex));
8IlunJ
C4ex=zeros(size(ex));
VCV"S>aVf
C5ex=zeros(size(ex));
bo2H]PL*
C6ex=zeros(size(ex));
J1( 9QN[w
A,JmX
C1ey=zeros(size(ey));
cqQ#p2<%
C2ey=zeros(size(ey));
u(@$a4z
C3ey=zeros(size(ey));
kZR8a(4D
C4ey=zeros(size(ey));
wxKX{Bs
C5ey=zeros(size(ey));
k.uH~S _
C6ey=zeros(size(ey));
??^5;P{yx
~ksi</s
C1ez=zeros(size(ez));
6a[}'/
C2ez=zeros(size(ez));
dq(uVW^&ae
C3ez=zeros(size(ez));
Ro\8ZXUQa
C4ez=zeros(size(ez));
;&9)I8Us
C5ez=zeros(size(ez));
5eLtCsHz
C6ez=zeros(size(ez));
]D?"aX'q>
'~5LY!H(pT
D1hx=zeros(size(hx));
YWe{juXSw
D2hx=zeros(size(hx));
m8A#~i .
D3hx=zeros(size(hx));
KI)M JG:t
D4hx=zeros(size(hx));
|,S+@"0#
D5hx=zeros(size(hx));
&v56#lG
D6hx=zeros(size(hx));
Lt u'W22
gwLf '
D1hy=zeros(size(hy));
}tRm] w
D2hy=zeros(size(hy));
Nv#t:J9f
D3hy=zeros(size(hy));
Bo)3!wO8
D4hy=zeros(size(hy));
T$>WE= Y
D5hy=zeros(size(hy));
sd*p/Q|4
D6hy=zeros(size(hy));
6</xL9#/
v[ .cd*b
D1hz=zeros(size(hz));
e%svrJ2
D2hz=zeros(size(hz));
CSJdvxb
D3hz=zeros(size(hz));
e^8 O_VB
D4hz=zeros(size(hz));
{j9{n
D5hz=zeros(size(hz));
joFm]3$;
D6hz=zeros(size(hz));
RSfQNc9Z
zwhe
%***********************************************************************
&Y!-%{e
% Update coefficients, as described in Section 7.8.2.
gqZ'$7So
%
I3aNFa}
% In order to simplify the update equations used in the time-stepping
D9<!mH
% loop, we implement UPML update equations throughout the entire
.CL[_;}
% grid. In the main grid, the electric-field update coefficients of
Lf16j*}-Q
% Equations 7.91a-f and the correponding magnetic field update
Pr3qo4t.L
% coefficients extracted from Equations 7.89 and 7.90 are simplified
BBaQ}{F8>2
% for the main grid (free space) and calculated below.
= I:.X ;
%
.!Oo|m`V@
%***********************************************************************
FtpK)9/4
P@Hs`=
C1=1.0;
Z?6%;n^ 54
C2=dt;
DVG(Vw
C3=1.0;
5&QJ7B,!
C4=1.0/2.0/epsr/epsr/epsz/epsz;
{:Orn%Q
C5=2.0*epsr*epsz;
|t^E~HLm,
C6=2.0*epsr*epsz;
p, h9D_
FEW14U'O
D1=1.0;
$|L Sx
D2=dt;
@Pm>sY}d<I
D3=1.0;
VrHv)lUr
D4=1.0/2.0/epsr/epsz/mur/muz;
Bc(Y(X$PK
D5=2.0*epsr*epsz;
B;M?,<%FRU
D6=2.0*epsr*epsz;
x6Bu F_.
vUN22;Z\
%***********************************************************************
3-[q4R
% Initialize main grid update coefficients
L5Ebc#
%***********************************************************************
8NxM4$nQX
b+%f+zz*h
C1ex(:,jh_bc:jh_tot-upml,:)=C1;
:y+2*lV
C2ex(:,jh_bc:jh_tot-upml,:)=C2;
;ic3).H
C3ex(:,:,kh_bc:kh_tot-upml)=C3;
34`'M+3
C4ex(:,:,kh_bc:kh_tot-upml)=C4;
?Y$JWEPJ
C5ex(ih_bc:ie_tot-upml,:,:)=C5;
P2NQHX
C6ex(ih_bc:ie_tot-upml,:,:)=C6;
iJ-23_D
!<j'Ea
C1ey(:,:,kh_bc:kh_tot-upml)=C1;
UvJ}b
C2ey(:,:,kh_bc:kh_tot-upml)=C2;
VQ(j pns5
C3ey(ih_bc:ih_tot-upml,:,:)=C3;
4QH3fTv
C4ey(ih_bc:ih_tot-upml,:,:)=C4;
B\=L3eL<D
C5ey(:,jh_bc:je_tot-upml,:)=C5;
Vy6qbC-Kt
C6ey(:,jh_bc:je_tot-upml,:)=C6;
p#&h=,W}
E-4b[xNj*+
C1ez(ih_bc:ih_tot-upml,:,:)=C1;
lsJSYJG&
C2ez(ih_bc:ih_tot-upml,:,:)=C2;
sQ=]NF)\
C3ez(:,jh_bc:jh_tot-upml,:)=C3;
oQLq&zRH`f
C4ez(:,jh_bc:jh_tot-upml,:)=C4;
sGi"rg#
C5ez(:,:,kh_bc:ke_tot-upml)=C5;
AS!?q
C6ez(:,:,kh_bc:ke_tot-upml)=C6;
9Z|jxy
>W%EmnLK
D1hx(:,jh_bc:je_tot-upml,:)=D1;
?ME6+Z\
D2hx(:,jh_bc:je_tot-upml,:)=D2;
P9GN}GN%v
D3hx(:,:,kh_bc:ke_tot-upml)=D3;
_Us#\+]_:
D4hx(:,:,kh_bc:ke_tot-upml)=D4;
u7Y WnD
D5hx(ih_bc:ih_tot-upml,:,:)=D5;
|WQBDB`W
D6hx(ih_bc:ih_tot-upml,:,:)=D6;
$ZUdT
KxI&G%z
D1hy(:,:,kh_bc:ke_tot-upml)=D1;
ot,jp|N>f~
D2hy(:,:,kh_bc:ke_tot-upml)=D2;
Tre]"2l
D3hy(ih_bc:ie_tot-upml,:,:)=D3;
v]'ztFA
D4hy(ih_bc:ie_tot-upml,:,:)=D4;
iNWw;_|1
D5hy(:,jh_bc:jh_tot-upml,:)=D5;
%D UH@j
D6hy(:,jh_bc:jh_tot-upml,:)=D6;
?5+.`L9H
wu7Lk3
D1hz(ih_bc:ie_tot-upml,:,:)=D1;
$3W;=Id=+
D2hz(ih_bc:ie_tot-upml,:,:)=D2;
Pnk5mK$
D3hz(:,jh_bc:je_tot-upml,:)=D3;
AV:hBoO
D4hz(:,jh_bc:je_tot-upml,:)=D4;
xmNB29#
D5hz(:,:,kh_bc:kh_tot-upml)=D5;
/@wg>&L]
D6hz(:,:,kh_bc:kh_tot-upml)=D6;
f~t:L,\,
JUsQ,ETn
%***********************************************************************
i/65v
% Fill in PML regions
9/{(%XwX
%
_ q(ko/T
% PML theory describes a continuous grading of the material properties
?[VM6- &
% over the PML region. In the FDTD grid it is necessary to discretize
-j+UMlkB
% the grading by averaging the material properties over a grid cell
bbtGXfI+SB
% width centered on each field component. As an example of the
)YYf1o[+
% implementation of this averaging, we take the integral of the
+dWDxguE{w
% continuous sigma(x) in the PML region
XtXEB<4Z
%
&VhroHO
% sigma_i = integral(sigma(x))/delta
O%Scjm-^X
%
+@A
% where the integral is over a single grid cell width in x, and is
HeK/7IAqp
% bounded by x1 and x2. Applying this to the polynomial grading of
7yG#Z)VE
% Equation 7.60a produces
ED2a}Tt>Z
%
Nu0C;B66
% sigma_i = (x2^(m+1)-x1^(m+1))*sigmam/(delta*(m+1)*d^m)
AhCW'.
%
$'0u |Xy`
% where sigmam is the maximum value of sigma as described by Equation
dWM'fg
% 7.62.
H~oail{EQ
%
ySk R>y
% The definitions of x1 and x2 depend on the position of the field
3YeG$^y"
% component within the grid cell. We have either
vV'EZ?
%
.\\DKh%
% x1 = (i-0.5)*delta, x2 = (i+0.5)*delta
x5|I
%
qPWP&k
% or
#Z}Rfk(~
%
Hta y-PB }
% x1 = (i)*delta, x2 = (i+1)*delta
,QOG!T4
%
_A M*@|p,
% where i varies over the PML region.
OtY`@\hy
%
XpIklL7
%***********************************************************************
dl.N.P7}4
6 +Sxr
rmax=exp(-16); %desired reflection error, designated as R(0) in Equation 7.62
u9:`4b
GSY(
orderbc=4; %order of the polynomial grading, designated as m in Equation 7.60a,b
@y e4q.m
[=x[ w70
% x-varying material properties
~<P 0]ju
delbc=upml*delta;
&qLf@1AD
sigmam=-log(rmax)*(orderbc+1.0)/(2.0*eta*delbc);
qsF<!'m7`
%sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1.0));
q?,).x nN
:Gv1?M
kmax=1;
R]Vt Y7}i,
kfactor=(kmax-1.0)/delta/(orderbc+1.0)/delbc^orderbc;
x[4`fM.m*
%&$Tz1"
for i=1:upml
qBU-~"2t
LnFdhrB@x
% Coefficients for field components in the center of the grid cell
5(Cl1Yse=r
x1=(upml-i+1)*delta;
OGBHos
x2=(upml-i)*delta;
g6W)4cC8a
sigma=sigfactor*(x1^(orderbc+1)-x2^(orderbc+1));
4]rnY~
ki=1+kfactor*(x1^(orderbc+1)-x2^(orderbc+1));
HvUxsdT
facm=(2*epsr*epsz*ki-sigma*dt);
`^91%f
facp=(2*epsr*epsz*ki+sigma*dt);
A]y`7jJ
"MxnFeLM#
C5ex(i,:,:)=facp;
Xk:OL,c
C5ex(ie_tot-i+1,:,:)=facp;
=AsEZ)" _
C6ex(i,:,:)=facm;
cO-7ke
C6ex(ie_tot-i+1,:,:)=facm;
osciZ'~
D1hz(i,:,:)=facm/facp;
y6@0O%TDN
D1hz(ie_tot-i+1,:,:)=facm/facp;
k=2Lo
D2hz(i,:,:)=2.0*epsr*epsz*dt/facp;
8{Q<N%Jnu
D2hz(ie_tot-i+1,:,:)=2.0*epsr*epsz*dt/facp;
Om \o#{D
D3hy(i,:,:)=facm/facp;
t^VwR=i
D3hy(ie_tot-i+1,:,:)=facm/facp;
,c$,!.r
D4hy(i,:,:)=1.0/facp/mur/muz;
%`k6w3qI
D4hy(ie_tot-i+1,:,:)=1.0/facp/mur/muz;
Q.bXM?V)
@(l^]9(V\
% Coefficients for field components on the grid cell boundary
H12Fw'2
x1=(upml-i+1.5)*delta;
r~[Ia!U ?
x2=(upml-i+0.5)*delta;
~aw.(A?MI
sigma=sigfactor*(x1^(orderbc+1)-x2^(orderbc+1));
sD<a+Lw}x
ki=1.0+kfactor*(x1^(orderbc+1)-x2^(orderbc+1));
SEORSS
facm=(2.0*epsr*epsz*ki-sigma*dt);
fTzvmC:g7
facp=(2.0*epsr*epsz*ki+sigma*dt);
-1Jg?cPzk
1ofKt=|=
C1ez(i,:,:)=facm/facp;
l_3`G-`2
C1ez(ih_tot-i+1,:,:)=facm/facp;
"B8Q:
C2ez(i,:,:)=2.0*epsr*epsz*dt/facp;
tWo{7) Eb
C2ez(ih_tot-i+1,:,:)=2.0*epsr*epsz*dt/facp;
cD@(/$wt
C3ey(i,:,:)=facm/facp;
909?_v
C3ey(ih_tot-i+1,:,:)=facm/facp;
KTK <gV9:
C4ey(i,:,:)=1.0/facp/epsr/epsz;
Gk967pC
C4ey(ih_tot-i+1,:,:)=1.0/facp/epsr/epsz;
6~OoFm5
D5hx(i,:,:)=facp;
4p e'06:
D5hx(ih_tot-i+1,:,:)=facp;
< |e,05aM
D6hx(i,:,:)=facm;
K7$x<5 +)
D6hx(ih_tot-i+1,:,:)=facm;
~Xr=4V:a+
$v,dz_O*\
end
<DpevoF
2`.cK 3
% PEC walls
d[r#-h>dS
C1ez(1,:,:)=-1.0;
?xK8#
C1ez(ih_tot,:,:)=-1.0;
XV!6dh!
C2ez(1,:,:)=0.0;
b>_o xK
C2ez(ih_tot,:,:)=0.0;
S(QpM.9*
C3ey(1,:,:)=-1.0;
z+x\(/
C3ey(ih_tot,:,:)=-1.0;
U!T~!C^
C4ey(1,:,:)=0.0;
TPVVck-T8
C4ey(ih_tot,:,:)=0.0;
Kj V:|
M]<?k]_p
% y-varying material properties
mrTlXXz
delbc=upml*delta;
UsgK
sigmam=-log(rmax)*epsr*epsz*cc*(orderbc+1.0)/(2.0*delbc);
,/[6e\0~
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1.0));
^*S ,xP
kmax=1.0;
9s_vL9u
kfactor=(kmax-1.0)/delta/(orderbc+1.0)/delbc^orderbc;
ADZ};:]
=5aDM\L$&
for j=1:upml
~7Y+2FZ
g"Ljm7
% Coefficients for field components in the center of the grid cell
PiY Y6i0
y1=(upml-j+1)*delta;
DvME1]7)
y2=(upml-j)*delta;
Kfm5i Q
sigma=sigfactor*(y1^(orderbc+1)-y2^(orderbc+1));
P D4Tz!F
ki=1+kfactor*(y1^(orderbc+1)-y2^(orderbc+1));
avjpA?Vz
facm=(2*epsr*epsz*ki-sigma*dt);
4B=2>k
facp=(2*epsr*epsz*ki+sigma*dt);
k $M]3}$U
-7m:91x
C5ey(:,j,:)=facp;
9Kr+\F
C5ey(:,je_tot-j+1,:)=facp;
UYFwS/ RW}
C6ey(:,j,:)=facm;
=b38(\
C6ey(:,je_tot-j+1,:)=facm;
Y_}mYvJW
D1hx(:,j,:)=facm/facp;
mt9.x
D1hx(:,je_tot-j+1,:)=facm/facp;
nJbtS#`G4
D2hx(:,j,:)=2*epsr*epsz*dt/facp;
ygOd69
D2hx(:,je_tot-j+1,:)=2*epsr*epsz*dt/facp;
$`APHjijN
D3hz(:,j,:)=facm/facp;
ktI/3Mb@
D3hz(:,je_tot-j+1,:)=facm/facp;
W>!_|[a
D4hz(:,j,:)=1/facp/mur/muz;
'"y|p+=j:
D4hz(:,je_tot-j+1,:)=1/facp/mur/muz;
jQk*8
D@G\7KH@
% Coefficients for field components on the grid cell boundary
f @8mS
y1=(upml-j+1.5)*delta;
R=.4
y2=(upml-j+0.5)*delta;
ttXXy3G#
sigma=sigfactor*(y1^(orderbc+1)-y2^(orderbc+1));
^ K|;~}P
ki=1+kfactor*(y1^(orderbc+1)-y2^(orderbc+1));
.id)VF-l
facm=(2*epsr*epsz*ki-sigma*dt);
]FD'5p{
facp=(2*epsr*epsz*ki+sigma*dt);
U QE qX
1D16
C1ex(:,j,:)=facm/facp;
ag$Vgl
C1ex(:,jh_tot-j+1,:)=facm/facp;
Z:ni$7<.
C2ex(:,j,:)=2*epsr*epsz*dt/facp;
8iW;y2qF
C2ex(:,jh_tot-j+1,:)=2*epsr*epsz*dt/facp;
^Y<|F!0
C3ez(:,j,:)=facm/facp;
Fd?"-
C3ez(:,jh_tot-j+1,:)=facm/facp;
-<Hu!V`+
C4ez(:,j,:)=1/facp/epsr/epsz;
YRv&1!VLE
C4ez(:,jh_tot-j+1,:)=1/facp/epsr/epsz;
[qdRUV'
D5hy(:,j,:)=facp;
Jm|+-F@I
D5hy(:,jh_tot-j+1,:)=facp;
CQZgMY1{
D6hy(:,j,:)=facm;
?!wgH9?8
D6hy(:,jh_tot-j+1,:)=facm;
&P.4(1sC
x? ?pBhJH
end
jlp:lX
~UyV<
% PEC walls
D*Ik7Pe
C1ex(:,1,:)=-1;
$f,n8]
C1ex(:,jh_tot,:)=-1;
iY`%SmB
C2ex(:,1,:)=0;
*J$=.fF1
C2ex(:,jh_tot,:)=0;
9k9_mjLZ
C3ez(:,1,:)=-1;
dp++%:j
C3ez(:,jh_tot,:)=-1;
nM\eDNK
C4ez(:,1,:)=0;
VmCW6 G#M
C4ez(:,jh_tot,:)=0;
1h>yu3O
UUF;p2{f
% z-varying material properties
u583_k%
delbc=upml*delta;
RbCPmiZcH
sigmam=-log(rmax)*epsr*epsz*cc*(orderbc+1)/(2*delbc);
DKfE.p)
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1));
z?>D_NLX6
%kmax=1;
h\7fp.
%kfactor=(kmax-1)/delta/(orderbc+1)/delbc^orderbc;
J\J?yo 6
kfactor=0;
_tSAI
vgD {qg@
for k=1:upml
;GVV~.7/
1J6,]M
% Coefficients for field components in the center of the grid cell
.U"8mP=&
z1=(upml-k+1)*delta;
G+F#n6Vx
z2=(upml-k)*delta;
!E,A7s
sigma=sigfactor*(z1^(orderbc+1)-z2^(orderbc+1));
O_cbP59Y.
ki=1+kfactor*(z1^(orderbc+1)-z2^(orderbc+1));
{*[\'!d--.
facm=(2*epsr*epsz*ki-sigma*dt);
Qhs/E`k4
facp=(2*epsr*epsz*ki+sigma*dt);
$p#%G#T
Q9Uf.Lh2
C5ez(:,:,k)=facp;
DjI3?NN
C5ez(:,:,ke_tot-k+1)=facp;
HQ|MhM/"
C6ez(:,:,k)=facm;
76wc ,+
C6ez(:,:,ke_tot-k+1)=facm;
xBUya4w
D1hy(:,:,k)=facm/facp;
L,SGT8lL
D1hy(:,:,ke_tot-k+1)=facm/facp;
)>b.;
D2hy(:,:,k)=2*epsr*epsz*dt/facp;
V?Z.\~
D2hy(:,:,ke_tot-k+1)=2*epsr*epsz*dt/facp;
0E?jW7yr
D3hx(:,:,k)=facm/facp;
Jo$G,Q
D3hx(:,:,ke_tot-k+1)=facm/facp;
C|d\3S\(
D4hx(:,:,k)=1/facp/mur/muz;
ikSF)r;*t
D4hx(:,:,ke_tot-k+1)=1/facp/mur/muz;
ET _W-
9Rn? :B~W:
% Coefficients for field components on the grid cell boundary
^M%uV
z1=(upml-k+1.5)*delta;
DVah
z2=(upml-k+0.5)*delta;
M~WijDj
sigma=sigfactor*(z1^(orderbc+1)-z2^(orderbc+1));
w$H^q !(
ki=1+kfactor*(z1^(orderbc+1)-z2^(orderbc+1));
H~GQ;PhRx
facm=(2*epsr*epsz*ki-sigma*dt);
SF}<{x_
facp=(2*epsr*epsz*ki+sigma*dt);
a\IP12F?
_ ):d`O e
C1ey(:,:,k)=facm/facp;
Q?8R[i
C1ey(:,:,kh_tot-k+1)=facm/facp;
F.-R r
C2ey(:,:,k)=2*epsr*epsz*dt/facp;
umF Z?a
C2ey(:,:,kh_tot-k+1)=2*epsr*epsz*dt/facp;
nt;haeJ
C3ex(:,:,k)=facm/facp;
ebS0qo[oLH
C3ex(:,:,kh_tot-k+1)=facm/facp;
%YSpCI
C4ex(:,:,k)=1/facp/epsr/epsz;
ixW@7m
C4ex(:,:,kh_tot-k+1)=1/facp/epsr/epsz;
:@1eph0
D5hz(:,:,k)=facp;
smdZxFl
D5hz(:,:,kh_tot-k+1)=facp;
GiP`dtK
D6hz(:,:,k)=facm;
\%/#x V
D6hz(:,:,kh_tot-k+1)=facm;
(Fynok
c~{9a_G
end
E Q4KV
y_*PQZ$c<
% PEC walls
BYO"u6
C1ey(:,:,1)=-1;
`Ja?fI'H-
C1ey(:,:,kh_tot)=-1;
/CuXa%Ci^
C2ey(:,:,1)=0;
bV edFm
C2ey(:,:,kh_tot)=0;
lY~4'8^
C3ex(:,:,1)=-1;
cE`6uq7p
C3ex(:,:,kh_tot)=-1;
%ObLWH'
C4ex(:,:,1)=0;
AZzuI*
C4ex(:,:,kh_tot)=0;
)x}l3\s
"jTKSgv+q5
%figure
)+6v
%set(gcf,'DoubleBuffer','on')
6'kS_Zu{<
d)@<W1;
%***********************************************************************
$ e\h}A6
% Begin time stepping loop
~/ 8M 3k/
%***********************************************************************
S-7'it!1
nB%;S
for n=1:nmax
K TsgJ\W
G2]4n T
% Update magnetic field
gXonF'
bstore=bx;
d0aC Y
bx(2:ie_tot,:,:)=D1hx(2:ie_tot,:,:).* bx(2:ie_tot,:,:)-...
eh4gQ^l
D2hx(2:ie_tot,:,:).*((ez(2:ie_tot,2:jh_tot,:)-ez(2:ie_tot,1:je_tot,:))-...
rj6tZJZ#o0
(ey(2:ie_tot,:,2:kh_tot)-ey(2:ie_tot,:,1:ke_tot)))./delta;
'" X_B0k
hx(2:ie_tot,:,:)= D3hx(2:ie_tot,:,:).*hx(2:ie_tot,:,:)+...
>$ NDv
D4hx(2:ie_tot,:,:).*(D5hx(2:ie_tot,:,:).*bx(2:ie_tot,:,:)-...
ddfs8\
D6hx(2:ie_tot,:,:).*bstore(2:ie_tot,:,:));
6ZKsz5:=
bstore=by;
f6_];]yP
by(:,2:je_tot,:)=D1hy(:,2:je_tot,:).* by(:,2:je_tot,:)-...
?lbH02P{v
D2hy(:,2:je_tot,:).*((ex(:,2:je_tot,2:kh_tot)-ex(:,2:je_tot,1:ke_tot))-...
is1' s[
(ez(2:ih_tot,2:je_tot,:)-ez(1:ie_tot,2:je_tot,:)))./delta;
L7= Q<D<
hy(:,2:je_tot,:)= D3hy(:,2:je_tot,:).*hy(:,2:je_tot,:)+...
! iptT(2
D4hy(:,2:je_tot,:).*(D5hy(:,2:je_tot,:).*by(:,2:je_tot,:)-...
s[K^9wz
D6hy(:,2:je_tot,:).*bstore(:,2:je_tot,:));
-6tgsfEr
bstore=bz;
4Ue_Y'LmM
bz(:,:,2:ke_tot)=D1hz(:,:,2:ke_tot).* bz(:,:,2:ke_tot)-...
:Xn7Ha[f
D2hz(:,:,2:ke_tot).*((ey(2:ih_tot,:,2:ke_tot)-ey(1:ie_tot,:,2:ke_tot))-...
%r-V2)
(ex(:,2:jh_tot,2:ke_tot)-ex(:,1:je_tot,2:ke_tot)))./delta;
M t*6}Cl
hz(:,:,2:ke_tot)= D3hz(:,:,2:ke_tot).*hz(:,:,2:ke_tot)+...
`((Yc]:7
D4hz(:,:,2:ke_tot).*(D5hz(:,:,2:ke_tot).*bz(:,:,2:ke_tot)-...
e$u4vC~
D6hz(:,:,2:ke_tot).*bstore(:,:,2:ke_tot));
?gO8kPg/D
+$$$
% Update electric field
DHw&+MY
dstore=dx;
f'<Q.Vh<
dx(:,2:je_tot,2:ke_tot)=C1ex(:,2:je_tot,2:ke_tot).* dx(:,2:je_tot,2:ke_tot)+...
L lw&& K
C2ex(:,2:je_tot,2:ke_tot).*((hz(:,2:je_tot,2:ke_tot)-hz(:,1:je_tot-1,2:ke_tot))-...
9Ro6fjjE
(hy(:,2:je_tot,2:ke_tot)-hy(:,2:je_tot,1:ke_tot-1)))./delta;
^ K7ic,{
ex(:,2:je_tot,2:ke_tot)=C3ex(:,2:je_tot,2:ke_tot).*ex(:,2:je_tot,2:ke_tot)+...
6*qL[m.F[o
C4ex(:,2:je_tot,2:ke_tot).*(C5ex(:,2:je_tot,2:ke_tot).*dx(:,2:je_tot,2:ke_tot)-...
N0K){
C6ex(:,2:je_tot,2:ke_tot).*dstore(:,2:je_tot,2:ke_tot));
y.=/J8->
dstore=dy;
R*oXmuOsYA
dy(2:ie_tot,:,2:ke_tot)=C1ey(2:ie_tot,:,2:ke_tot).* dy(2:ie_tot,:,2:ke_tot)+...
:Gu+m
C2ey(2:ie_tot,:,2:ke_tot).*((hx(2:ie_tot,:,2:ke_tot)-hx(2:ie_tot,:,1:ke_tot-1))-...
21ppSN>
(hz(2:ie_tot,:,2:ke_tot)-hz(1:ie_tot-1,:,2:ke_tot)))./delta;
QV h4
ey(2:ie_tot,:,2:ke_tot)=C3ey(2:ie_tot,:,2:ke_tot).*ey(2:ie_tot,:,2:ke_tot)+...
\S*$UE]uG
C4ey(2:ie_tot,:,2:ke_tot).*(C5ey(2:ie_tot,:,2:ke_tot).*dy(2:ie_tot,:,2:ke_tot)-...
i]=&
C6ey(2:ie_tot,:,2:ke_tot).*dstore(2:ie_tot,:,2:ke_tot));
b{d4xU8'
dstore=dz;
xXY.AoO6
dz(2:ie_tot ..
d{3@h+zL
Q~MC7-n>
未注册仅能浏览
部分内容
,查看
全部内容及附件
请先
登录
或
注册
共
条评分
离线
wq_463
UID :20925
注册:
2008-11-06
登录:
2021-04-22
发帖:
227
等级:
仿真三级
1楼
发表于: 2009-05-11 10:08:24
你的第一个问题,我当时也看了半天,后来对照着taflove的2D程序发现,PML的设置也是这么写的,后来我就默认了,具体怎么弄我想期待高人的解答
B_ja&) !s1
你的第二问题你可以参考herosward师兄翻译的tafloveUPML章节,论坛有你可以去下载,根据UPML的递推公式,c1ex这些都是公式的参数,我们已c1ex为例:
Uu"0rUzt
c1ex=(2*epsr*ky-sigma*dt)/(2*epsr*ky+sigma*dt)
\ A%eG&
ZUp\Ep}
你可以看到这个参数只跟y方向的设置有关,于x,z方向的网格设置无关,你初始化总场的系数,当然要把y方向范围设置成总场的范围,c1ex(:,jh_bc:jh_tot-upml,:)=c1中jh_bc:jh_tot-upml就是y方向总场的范围
(f_g7B2&y
希望能对你有所帮助,同时期待高手的补充
共
1
条评分
gwzhao
技术分
+1
积极参与讨论+技术分 论坛感谢您的参与
2009-05-11
离线
funnyhaha
UID :16429
注册:
2008-08-05
登录:
2015-03-17
发帖:
173
等级:
积极交流四级
2楼
发表于: 2009-05-11 23:34:45
关于第一个问题的,采用7.60作为PML的电导系数变量的设计,\sigma (x_i) 不仅仅是在x_i点上衡量7.60.而是对\sigma(x)在一个胞上做积分,在除以胞的边长。如果你对7.60做积分,会得到TAFLOVE用的表达式。
共
1
条评分
gwzhao
技术分
+1
积极参与讨论+技术分 论坛感谢您的参与
2009-05-12
离线
yiting39
UID :24312
注册:
2009-01-08
登录:
2009-12-03
发帖:
25
等级:
仿真新人
3楼
发表于: 2009-05-12 20:20:46
回 1楼(wq_463) 的帖子
恩,看懂了,谢谢指点~
共
条评分
离线
yiting39
UID :24312
注册:
2009-01-08
登录:
2009-12-03
发帖:
25
等级:
仿真新人
4楼
发表于: 2009-05-12 20:21:27
回 2楼(funnyhaha) 的帖子
明白了,可是他用这种做法是为了更精确点吗?
共
条评分
离线
xiahuiz
UID :20367
注册:
2008-10-29
登录:
2012-04-07
发帖:
30
等级:
仿真一级
5楼
发表于: 2009-05-18 15:44:15
回 4楼(yiting39) 的帖子
可能是尽量匀化sigma从而减少数值上的反射吧
共
1
条评分
gwzhao
技术分
+1
积极参与讨论+技术分 论坛感谢您的参与
2009-05-18
离线
rift
UID :6229
注册:
2007-11-27
登录:
2025-08-14
发帖:
92
等级:
仿真三级
6楼
发表于: 2009-09-13 11:10:42
呵呵,发现一个相同的问题
:D^Y?
没看清帖子,重新编辑,删掉
共
条评分
离线
inter
UID :42650
注册:
2009-09-28
登录:
2020-04-23
发帖:
120
等级:
仿真二级
7楼
发表于: 2010-04-22 10:17:04
kmax=1; 4K% YS
,*q#qW!!
kfactor=(kmax-1.0)/delta/(orderbc+1.0)/delbc^orderbc; 5 Ep 我觉得这里好像没有必要啊.不是一直为0吗,请指教!
共
条评分
我觉得我什么都不懂!
离线
xiaoyuan
UID :53338
注册:
2010-02-28
登录:
2015-12-05
发帖:
156
等级:
仿真二级
8楼
发表于: 2010-07-20 08:08:38
回 1楼(wq_463) 的帖子
其实我觉得第一个问题,完全可以这么写,
pDLu +}@
C1ex(:,:,:)=C1;
c+,7Zu!
C2ex(:,:,:)=C2;
$V`KrA~]
C3ex(:,:,:)=C3;
&=+cov(3
C4ex(:,:,:)=C4;
]Ssw32yn
C5ex(:,:,:)=C5;
+cPE4(d
C6ex(:,:,:)=C6;
PK:o}IWn~x
C7ex(:,:,:)=C7;
3p?<iVE
C8ex(:,:,:)=C8;
i6!T`Kau
不会影响结果,这样写还快速,不用去考虑哪里是PML,哪里是主机算区域。因为后面还是要给部分重新赋值,我先赋值了也没关系,后面会覆盖。
共
条评分
发帖
回复