登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
时域有限差分法 FDTD
>
请教个UPML程序中的问题
发帖
回复
1646
阅读
8
回复
[
求助
]
请教个UPML程序中的问题
离线
yiting39
UID :24312
注册:
2009-01-08
登录:
2009-12-03
发帖:
25
等级:
仿真新人
0楼
发表于: 2009-05-10 22:39:15
我在看该3D的UPML程序时,有个地方看不懂,不知道是从哪个公式写出来的,请高人指点,非常谢谢了~
aDr46TB`J
问题是:
G;r-f63N
1.sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1.0));这句的公式是对应Allen书上的(7.60a)式吗,它是怎么对应X的M次方的?
^]Mlkd:
2.C1ex(:,jh_bc:jh_tot-upml,:)=C1;等一系列的赋值的范围如jh_bc:jh_tot-upml是根据什么定的啊?
haj\Dm
n$>E'oG2t
该程序如下:
>(>Fx\z}
%***********************************************************************
zSs5F_
% 3-D FDTD code with UPML absorbing boundary conditions
zyey5Z:7
%***********************************************************************
>9KQWeD
%
eLC}h %
% Program author: Keely J. Willis, Graduate Student
38(Cj~u=3
% UW Computational Electromagnetics Laboratory
LZC)vF5
% Director: Susan C. Hagness
7kbeAJ+{
% Department of Electrical and Computer Engineering
GMLDmTV
% University of Wisconsin-Madison
]u~6fknm
% 1415 Engineering Drive
dno=C
% Madison, WI 53706-1691
CH h]v.V
%
kjwillis@wisc.edu
7|=*z
%
9AJMm1_
% Copyright 2005
cQj{[Wt4
%
hN% h.;s
% This MATLAB M-file implements the finite-difference time-domain
) {=2td$=$
% solution of Maxwell's curl equations over a three-dimensional
Ya$JX(aUe
% Cartesian (笛卡尔)space lattice comprised of uniform cubic grid cells.
z>_jC+
%
b.Wf*I?
% The dimensions of the computational domain are 8.2 cm
ZT@a2:&
% (x-direction), 3.4 cm (y-direction), and 3.2 cm (z-direction).
|cZKj|0>
% The grid is terminated with UPML absorbing boundary conditions.
M+Rxt.~6
%
OW$? 6
% An electric current source comprised of two collinea(共线的)r Jz components
e*[M*u
% (realizing a Hertzian dipole) excites a radially propagating wave.
QC+oSb!!?
% The current source is located in the center of the grid. The
{UX[SAQ
% source waveform is a differentiated Gaussian pulse given by
8!e1T,:b
% J(t)=J0*(t-t0)*exp(-(t-t0)^2/tau^2),
xxnMvL;
% where tau=50 ps. The FWHM spectral bandwidth of this zero-dc-
~c8Z9[QW
% content pulse is approximately 7 GHz. The grid resolution
?R2`RvQ
% (dx = 2 mm) was chosen to provide at least 10 samples per
fG;(&Dx
% wavelength up through 15 GHz.
C+/D!ZH%P
%
!M]_CPh]
% To execute this M-file, type "fdtd3D_UPML" at the MATLAB prompt.
;1`NsYI2
%
9p,<<5{
% This code has been tested in the following Matlab environments:
DkO>?n:-C
% Matlab version 6.1.0.450 Release 12.1 (May 18, 2001)
w`~j(G4N
% Matlab version 6.5.1.199709 Release 13 Service Pack 1 (August 4, 2003)
q#W7.8 Z@
% Matlab version 7.0.0.19920 R14 (May 6, 2004)
K>H_q@-?f
% Matlab version 7.0.1.24704 R14 Service Pack 1 (September 13, 2004)
(C;oot,
% Matlab version 7.0.4.365 R14 Service Pack 2 (January 29, 2005)
"D V.%7*^
%
neC]\B[Xm
% Note: if you are using Matlab version 6.x, you may wish to make
'IrwlS
% one or more of the following modifications to this code:
S9Kay'.aJ(
% --uncomment line numbers 485 and 486
XO |U4#ya
% --comment out line numbers 552 and 561
z1oikg:?4
%
I<Vh Eo,
%***********************************************************************
kzs}U'U
J?Kgev%
clear
]sz3:p=5
;D5B$ @W>
%***********************************************************************
=\IcUY,4
% Fundamental constants
LGb.>O^
%***********************************************************************
UH8)r
8e_ITqV%
cc=2.99792458e8;
wA`A+Z2*?
muz=4.0*pi*1.0e-7;
Dim,HPx]d
epsz=1.0/(cc*cc*muz);
7 R1;'/;
etaz=sqrt(muz/epsz);
H^s@qh)L
WZ"g:Khw
%***********************************************************************
mUi|vq)`=D
% Material parameters
#vN\]e
%***********************************************************************
.MO"8}]8Z
$;<h<#_n;
mur=1.0;
'c#ZW|A
epsr=1.0;
G:qkk(6_#
eta=etaz*sqrt(mur/epsr);
pf.T{/%
F8 4LMk?U
%***********************************************************************
2fc8w3
% Grid parameters
g+ `Ie'o<
%
|q$br-0+
% Each grid size variable name describes the number of sampled points
r>lC(x\B
% for a particular field component in the direction of that component.
7QiJ1P.z
% Additionally, the variable names indicate the region of the grid
)4[{+OJa
% for which the dimension is relevant. For example, ie_tot is the
"yMr\jt~-
% number of sample points of Ex along the x-axis in the total
B8'(3&)My
% computational grid, and jh_bc is the number of sample points of Hy
_tE$a3`
% along the y-axis in the y-normal UPML regions.
Q"]C"?
%
NJ-cP m
%***********************************************************************
^=)? a;V
fT.5@RR7^
ie=41; % Size of main grid
hk"^3d !
je=17;
=dbLA ,z9
ke=16;
B^(0>Da\
ih=ie+1;
D]+tr%
jh=je+1;
?5m[Qc(<
kh=ke+1;
l7 D/]&
{rr ED
upml=10; % Thickness of PML boundaries
X~RET[L2
ih_bc=upml+1;
qIQvix$8
jh_bc=upml+1;
;F@dN,Y
kh_bc=upml+1;
k|l"Rh<\~
bHcb.;<
ie_tot=ie+2*upml; % Size of total computational domain
[!>2[bbl
je_tot=je+2*upml;
v~73
ke_tot=ke+2*upml;
CORNN8=k
ih_tot=ie_tot+1;
!ViHC}:
jh_tot=je_tot+1;
Fs:l"5~>1
kh_tot=ke_tot+1;
/Ny/%[cu
]3#_BL)M8p
is=round(ih_tot/2); % Location of z-directed current source
2S^xqvh
js=round(jh_tot/2);
whP>'9t.w
ks=round(ke_tot/2);
6USet`#
vO" $Xw
%***********************************************************************
c4CBpi?}
% Fundamental grid parameters
]4@z.1Mr
%***********************************************************************
2l+O|R
[_j.pMH/P
delta=0.002;
<wTkPErUG
dt=delta*sqrt(epsr*mur)/(2.0*cc);
qv3L@"Ub
nmax=100;
Y=/3_[G
j#%*@]>Tg
%***********************************************************************
1p,G8 v+B
% Differentiated Gaussian pulse excitation
6<A\U/
%***********************************************************************
'w.:I TJf
Qwx}e\=
rtau=50.0e-12;
ee&QZVL>
tau=rtau/dt;
=Feavyx
ndelay=3*tau;
$Vp&Vc8
J0=-1.0*epsz;
ja2LQe@Q
GpF, =:
%***********************************************************************
wP/rR D6
% Initialize field arrays
d; @Kz^
%***********************************************************************
Q>}I@eyJ
xtU)3I=F%
ex=zeros(ie_tot,jh_tot,kh_tot);
(J Fa
ey=zeros(ih_tot,je_tot,kh_tot);
;3'}(_n
ez=zeros(ih_tot,jh_tot,ke_tot);
/>\.zuAr&
dx=zeros(ie_tot,jh_tot,kh_tot);
pCf-W/v
dy=zeros(ih_tot,je_tot,kh_tot);
?"AcK"v
dz=zeros(ih_tot,jh_tot,ke_tot);
FQi"OZHq
?AY596
hx=zeros(ih_tot,je_tot,ke_tot);
I_xJ[ALdm
hy=zeros(ie_tot,jh_tot,ke_tot);
URR|Q!D
hz=zeros(ie_tot,je_tot,kh_tot);
M:?eK [h
bx=zeros(ih_tot,je_tot,ke_tot);
N|q:wyS|
by=zeros(ie_tot,jh_tot,ke_tot);
s@o"V >t
bz=zeros(ie_tot,je_tot,kh_tot);
@6.1EK0
Yl1@gw7
%***********************************************************************
]8YHA}P
% Initialize update coefficient arrays
ZvNXfC3Ia
%***********************************************************************
D4[5}NYU
l;Zc[6
C1ex=zeros(size(ex));
Fg4eIE-/M
C2ex=zeros(size(ex));
Mz]LFM
C3ex=zeros(size(ex));
`Y.RAw5LrE
C4ex=zeros(size(ex));
1`_Mc ]
C5ex=zeros(size(ex));
f%*-PW^*
C6ex=zeros(size(ex));
NLb/Bja
: M0LAN
C1ey=zeros(size(ey));
0y'34}
C2ey=zeros(size(ey));
C bG"8F|4
C3ey=zeros(size(ey));
hFa\x5I5
C4ey=zeros(size(ey));
$if(`8
C5ey=zeros(size(ey));
SVXey?A;CJ
C6ey=zeros(size(ey));
m{Q{ qJ5>
*goi^Xp
C1ez=zeros(size(ez));
*GuCv3|
C2ez=zeros(size(ez));
Q+ G=f
C3ez=zeros(size(ez));
bz H5Lc {%
C4ez=zeros(size(ez));
WP^%[?S2
C5ez=zeros(size(ez));
+cy(}Vp
C6ez=zeros(size(ez));
"_'9KBd!
}9P)<[>
D1hx=zeros(size(hx));
U$VTk
D2hx=zeros(size(hx));
:'GTCo$3
D3hx=zeros(size(hx));
XrSqUD
D4hx=zeros(size(hx));
oB9Fas!N
D5hx=zeros(size(hx));
3{CGYd]_u
D6hx=zeros(size(hx));
E_?3<)l)RI
BY,%+>bc)
D1hy=zeros(size(hy));
#_7}O0?c3
D2hy=zeros(size(hy));
XA9$n_|bw
D3hy=zeros(size(hy));
WF-imI:EK
D4hy=zeros(size(hy));
RWTv,pLK
D5hy=zeros(size(hy));
9FV#@uA}D
D6hy=zeros(size(hy));
f$V']dOj1q
M~N'z/
D1hz=zeros(size(hz));
s'\"%~nF<
D2hz=zeros(size(hz));
R52q6y:<x
D3hz=zeros(size(hz));
e%'9oAz
D4hz=zeros(size(hz));
m!;mEBL{
D5hz=zeros(size(hz));
:Np&G4IM>
D6hz=zeros(size(hz));
*N'B(j/
0e vxRcrzz
%***********************************************************************
-oF4mi8S
% Update coefficients, as described in Section 7.8.2.
Vzbl*Zmx
%
@292;qi
% In order to simplify the update equations used in the time-stepping
#C%<g:F8
% loop, we implement UPML update equations throughout the entire
" I`YJEv
% grid. In the main grid, the electric-field update coefficients of
>R !^aJ
% Equations 7.91a-f and the correponding magnetic field update
L ?KEe>;r
% coefficients extracted from Equations 7.89 and 7.90 are simplified
&B3\;|\
% for the main grid (free space) and calculated below.
[zf9UUc~
%
^@X =v`C
%***********************************************************************
NV9= ~cx
Pn 7oQA\
C1=1.0;
Y]8l]l 1
C2=dt;
<;9vwSH>
C3=1.0;
BzWmV.5
C4=1.0/2.0/epsr/epsr/epsz/epsz;
{AIZ,
C5=2.0*epsr*epsz;
RSmxwx^
C6=2.0*epsr*epsz;
_IpW&
jIdhmd* $z
D1=1.0;
:sT<<LtI-
D2=dt;
mH?^3T
D3=1.0;
o]Vx6
D4=1.0/2.0/epsr/epsz/mur/muz;
5Y9 j/wA
D5=2.0*epsr*epsz;
i-E&Y*\^9H
D6=2.0*epsr*epsz;
:X`J1E]Rjd
,st4K;-
%***********************************************************************
RFA5vCG
% Initialize main grid update coefficients
JI\u -+BE
%***********************************************************************
2 H^9Qd
4\sS
C1ex(:,jh_bc:jh_tot-upml,:)=C1;
PVEEKKJP]J
C2ex(:,jh_bc:jh_tot-upml,:)=C2;
J_P2% b=C
C3ex(:,:,kh_bc:kh_tot-upml)=C3;
B)^]V<l(w
C4ex(:,:,kh_bc:kh_tot-upml)=C4;
d\Dxmb]o
C5ex(ih_bc:ie_tot-upml,:,:)=C5;
8a?V h^
C6ex(ih_bc:ie_tot-upml,:,:)=C6;
~q|^z[7
U?|s/U
C1ey(:,:,kh_bc:kh_tot-upml)=C1;
a.8 nWs^
C2ey(:,:,kh_bc:kh_tot-upml)=C2;
h r6f}2
C3ey(ih_bc:ih_tot-upml,:,:)=C3;
kf5921(P
C4ey(ih_bc:ih_tot-upml,:,:)=C4;
>!WJ{M0
C5ey(:,jh_bc:je_tot-upml,:)=C5;
yx/:<^"-$
C6ey(:,jh_bc:je_tot-upml,:)=C6;
<j,7Z>Rk\x
yDd&*;9%Qg
C1ez(ih_bc:ih_tot-upml,:,:)=C1;
?6j@EJ<2q
C2ez(ih_bc:ih_tot-upml,:,:)=C2;
4dfe5\
C3ez(:,jh_bc:jh_tot-upml,:)=C3;
&