登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
矩量法 MOM
>
求矩量法分析的一些程序,有角反射天线的最 ..
发帖
回复
1793
阅读
2
回复
[
求助
]
求矩量法分析的一些程序,有角反射天线的最好
离线
iqu8
UID :27671
注册:
2009-03-17
登录:
2009-06-15
发帖:
13
等级:
仿真新人
0楼
发表于: 2009-04-25 13:50:04
那位大大有啊,跪求
20 )8e!jP
[email]iqu8@qq.com[ ..
K?=g IC:
1fV\84m^
未注册仅能浏览
部分内容
,查看
全部内容及附件
请先
登录
或
注册
共
条评分
离线
jltung
UID :27108
注册:
2009-03-10
登录:
2010-09-07
发帖:
33
等级:
仿真新人
1楼
发表于: 2010-09-07 13:10:41
同求
cutejltong@163.com
共
条评分
离线
stevenkay
alizwell
UID :2851
注册:
2007-05-22
登录:
2017-09-27
发帖:
110
等级:
仿真二级
2楼
发表于: 2010-10-12 22:50:55
#这是一个大锅的反射计算程序
JiCy77H
BI0 A0
Qb&gKQtt@
# wire array in a semi circle
VHTr;(]hk
from scipy import *
[7gwJiK
from scipy.special import *
!7aJfs2
is}Y+^j.
# define the constant
T>pz?e^5&
IDM=90 # dimension index for x and y coordinates
^ot9Q
X=zeros(IDM,float)
2?\L#=<F
Y=X.copy()
"SN+ ^`
I=X.copy() # current on each wire
&p:GB_
RHO=zeros((IDM,IDM))
nAW`G'V#
A=RHO.copy() # [A][I]=[B]
6O'6,%#
B=zeros((IDM,1)) # field at observation point
&Ch~$Wb^
LAMDA=1.0 # normalized wavelength
'Mm=<Bh
#N=30 # number of cylinder wires
R%^AW2
THETA0=pi/2.0 # incidence angle in respect to z diretion
Z1M{5E
PHI0=0.0 # incidence angle on x-y plane in respect to +x direction
f)!7/+9>
E0=1.0 # virtual incident wave field strength 1V/m
L=5Fvm
R=1.125*LAMDA # radius of array
f2RIOL,
K=2*pi/LAMDA # wave constant
J1{ucFa
AA=0.05/K # radius of wire
JM Ikr9/$
S=1.0/K
S*?x|&a
H=K*cos(THETA0) # wave propagation constant on +z direction
PU^@BZ_m
G=sqrt(K**2-H**2) # transverse wave constant
A0 1D-)
QLe<).S1B2
# define the wire location AND RHO
^ ]CQd
PHI=zeros(IDM,float)
q.NvwJ
for m in range(IDM):
?u_O(eg
PHI[m]=-0.5*pi+pi*float(m)/float(IDM)
5mB'\xGO2
X[m]=R*cos(PHI[m])
rty&\u@}
Y[m]=R*sin(PHI[m])
/V)4B4
cp<jwcc!
# construct matrix [A] [B]
#gY|T|
for m in range(IDM):
hZNAI
for n in range(IDM):
L\("
if (m-n):
g\foBK:GE
RHO[m,n]=sqrt((X[m]-X[n])**2+(Y[m]-Y[n])**2)
:_"%o=
else:
|!H@{o
RHO[m,n]=AA
d3K-|
ARGU=G*RHO[m,n]
Hnc<)_DF
A[m,n]=hankel2(0,ARGU)
@mId{w z
ALPHA=X[m]*sin(THETA0)*cos(-PHI[m])+Y[m]*sin(THETA0)*sin(-PHI[m]) # incidence wave
c9)5G+
B[m,0]=E0*exp(-1j*K*ALPHA)
,Frdi>7 ~
HrS
# solve [I]=[A]-1 [B]
YR}By;Bq
A=mat(A) # MUST FOR MATRIX INVERSION AND MULTIPLY
*IBCThj
B=mat(B)
7H5t!yk|9
A=linalg.inv(A)
< .B^\X$
I=A*B
Gmp`3
R SqO$~
# calculate far field
7T}r]C.
N=180 # number of angular PHI_FAR
/f) #CR0$
PHI_FAR=linspace(-pi,pi,N)
UV8K$n<
R_FAR=100.0*R # radius for far field caculation
ZMI vzQYI
SUM=zeros(N,complex) # scatter field at N different PHI_FAR
61{IXx_
XOB=zeros(N, float) # rectangular coordinates of obseravation point
\]+57^8r
YOB=XOB.copy()
~7Jj\@68
for n in range(N):
qb1[-H
XOB[n]=R_FAR*cos(PHI_FAR[n])
u#`FkuE\}
YOB[n]=R_FAR*sin(PHI_FAR[n])
2rJeON
for k in range(IDM):
IYk^eG:;
Ik=I[k,0] # it is so important that result of matrix
ZP^7`q)6
#must be reduced to element
>*cg K}!@
DX=XOB[n]-X[k]
Ig M_l=
DY=YOB[n]-Y[k]
'`fz|.|cbB
D_PHI=DX/sqrt(DX**2+DY**2) # relative angular between nth observation point and kth source
JypXQC}~
ALPHA_S=DX*cos(D_PHI)+DY*sin(D_PHI)
,=Fn6'
#ALPHA_S=X[k]*cos(PHI_FAR[n])+Y[k]*sin(PHI_FAR[n])
N"q C-h
SUM[n]+=Ik*exp(1j*G*ALPHA_S)
#Bgq]6G2
6`l7saHXE
MAG_SUM=abs(SUM)
+F3`?6UXz
for n in range(N):
s;4r)9Uvx
print PHI_FAR[n]/pi*180.0,MAG_SUM[n]
,3E9H&@j
}MV=I$S2U
import pylab
BbdJR]N/!h
pylab.plot(PHI_FAR/2/pi*360.0, MAG_SUM)
[.`%]Z(
pylab.show()
Jh)K0>R
K JX@?1"
J,=: ]t
rc9Y:(S1l
y:3d`E4Xw
2>!?EIE7
共
条评分
专业是电磁兼容测试和建模
发帖
回复