登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
时域有限差分法 FDTD
>
有用MATLAB做FDTD的进
发帖
回复
2119
阅读
1
回复
[
讨论
]
有用MATLAB做FDTD的进
离线
wuzjian@126
UID :20979
注册:
2008-11-07
登录:
2009-05-18
发帖:
44
等级:
仿真新人
0楼
发表于: 2009-03-06 15:24:56
这个程序不是很清楚,望各位大虾或同道中人一起研究。我的QQ:67715710.请注明FDTD.
pe+h8
%***********************************************************************
Px \cT
% 3-D FDTD code with UPML absorbing boundary conditions
L*A-&9.p3
%***********************************************************************
emnT;kJ>
%
pWJEFm
% Program author: Keely J. Willis, Graduate Student
6b'.WB]-
% UW Computational Electromagnetics Laboratory
S**eI<QFSk
% Director: Susan C. Hagness
wB \`3u4
% Department of Electrical and Computer Engineering
<EN9s
% University of Wisconsin-Madison
\y=oZk4
% 1415 Engineering Drive
vI5lp5( -3
% Madison, WI 53706-1691
[x>Ju&))$
% [url=mailto:kjwillis@wisc.edu]kjwillis@wisc.edu[/url]
!%('8-x%
%
)S2yU<6oOt
% Copyright 2005
hp9U
%
4m1r@ $
% This MATLAB M-file implements the finite-difference time-domain
DHw)]WB M
% solution of Maxwell's curl equations over a three-dimensional
W [K.|8ho
% Cartesian space lattice comprised of uniform cubic grid cells.
1nskf*Z
%
mJ k\$/Kh
% The dimensions of the computational domain are 8.2 cm
sTlel&
% (x-direction), 3.4 cm (y-direction), and 3.2 cm (z-direction).
zp1ym}9M
% The grid is terminated with UPML absorbing boundary conditions.
\'*M }G
%
` K{k0_{
% An electric current source comprised of two collinear Jz components
]FTi2B{}H
% (realizing a Hertzian dipole) excites a radially propagating wave.
z^Ikb(KC
% The current source is located in the center of the grid. The
<]LljTm`i
% source waveform is a differentiated Gaussian pulse given by
[{BY$"b#:
% J(t)=J0*(t-t0)*exp(-(t-t0)^2/tau^2),
c:9n8skE7
% where tau=50 ps. The FWHM spectral bandwidth of this zero-dc-
5Q"w{ n
% content pulse is approximately 7 GHz. The grid resolution
Q zaD\^OF
% (dx = 2 mm) was chosen to provide at least 10 samples per
RLnL9)`W
% wavelength up through 15 GHz.
Q^rR }Ws
%
uu,F5<y[
% To execute this M-file, type "fdtd3D_UPML" at the MATLAB prompt.
Op?"G
%
'OziP
% This code has been tested in the following Matlab environments:
N6}/TbfAR
% Matlab version 6.1.0.450 Release 12.1 (May 18, 2001)
oYStf5
% Matlab version 6.5.1.199709 Release 13 Service Pack 1 (August 4, 2003)
H%>4z3n
% Matlab version 7.0.0.19920 R14 (May 6, 2004)
y@!o&,,mq
% Matlab version 7.0.1.24704 R14 Service Pack 1 (September 13, 2004)
xV5UaD<
% Matlab version 7.0.4.365 R14 Service Pack 2 (January 29, 2005)
Hn(1_I%zF
%
uy3<2L#.
% Note: if you are using Matlab version 6.x, you may wish to make
o1$u;}^ |
% one or more of the following modifications to this code:
6xJffl
% --uncomment line numbers 485 and 486
`**{a/3
% --comment out line numbers 552 and 561
<c pck
%
vb6EO[e%I
%***********************************************************************
F1L[3D^-
clear
?[NC}LC
%***********************************************************************
~RuX2u-2&u
% Fundamental constants
=ZIT!B?4
%***********************************************************************
NEri{qxm
cc=2.99792458e8;
o" ,8
muz=4.0*pi*1.0e-7;
^1bslCe
epsz=1.0/(cc*cc*muz);
j"69uj` R
etaz=sqrt(muz/epsz);
}:Z A)
%***********************************************************************
.=#jdc/
% Material parameters
+C{-s
%***********************************************************************
$Xu3s~:S
mur=1.0;
FHSoj=
epsr=1.0;
UGhEaKH~R
eta=etaz*sqrt(mur/epsr);
_f^KP@^j
%***********************************************************************
'YNdrvz
% Grid parameters
UDg's
%
cZ?QI6|[
% Each grid size variable name describes the number of sampled points
uD&B{c+a
% for a particular field component in the direction of that component.
fj5g\m
% Additionally, the variable names indicate the region of the grid
w#9KtW,tt
% for which the dimension is relevant. For example, ie_tot is the
J @"#
% number of sample points of Ex along the x-axis in the total
P)=.Du)
% computational grid, and jh_bc is the number of sample points of Hy
p1Zb&:+
% along the y-axis in the y-normal UPML regions.
/^BC Qaj
%
g8%O^)d=>
%***********************************************************************
k5.5$<< T
ie=41; % Size of main grid
nG!<wlY14P
je=17;
U+)p'%f;
ke=16;
-Qn7+?P
ih=ie+1;
: OY~Q3 @
jh=je+1;
}bjZeh.
kh=ke+1;
FRrp@hE
upml=10; % Thickness of PML boundaries
3N+lWuE}K
ih_bc=upml+1;
\% =\4%:
jh_bc=upml+1;
d7X&3L%Oq
kh_bc=upml+1;
YzI;)
ie_tot=ie+2*upml; % Size of total computational domain
sV
je_tot=je+2*upml;
Lqj Qv$
ke_tot=ke+2*upml;
U4pIRa)S
ih_tot=ie_tot+1;
S 13cQ?4
jh_tot=je_tot+1;
G:1'}RC :
kh_tot=ke_tot+1;
}p7iv:P=3
is=round(ih_tot/2); % Location of z-directed current source
#]@HsVXh7
js=round(jh_tot/2);
d qn5G!fI
ks=round(ke_tot/2);
~y!'\d>q<
%***********************************************************************
neDXzMxF
% Fundamental grid parameters
G:=hg6'
%***********************************************************************
(8JU!lin
delta=0.002;
5G*cAlU
dt=delta*sqrt(epsr*mur)/(2.0*cc);
} p'ZMj&
nmax=100;
%T{]l;5
%***********************************************************************
H,!xTy"Wh
% Differentiated Gaussian pulse excitation
)#}>,,S
%***********************************************************************
RwWg:4
rtau=50.0e-12;
.gRj^pu
tau=rtau/dt;
_8VP'S=
ndelay=3*tau;
DYD<?._I
J0=-1.0*epsz;
5~JT*Ny
%***********************************************************************
`Z?wj@H1`
% Initialize field arrays
FM@iIlY"
%***********************************************************************
~f1g"
ex=zeros(ie_tot,jh_tot,kh_tot);
$RaN@& Wm
ey=zeros(ih_tot,je_tot,kh_tot);
R2~Tr$:
ez=zeros(ih_tot,jh_tot,ke_tot);
u]J@65~'b
dx=zeros(ie_tot,jh_tot,kh_tot);
`C+<!)2
dy=zeros(ih_tot,je_tot,kh_tot);
|@Tga_0p
dz=zeros(ih_tot,jh_tot,ke_tot);
k&]nF,f
hx=zeros(ih_tot,je_tot,ke_tot);
9Yx(u2PQ
hy=zeros(ie_tot,jh_tot,ke_tot);
w )R5P[b
hz=zeros(ie_tot,je_tot,kh_tot);
KQdIG9O+6
bx=zeros(ih_tot,je_tot,ke_tot);
%fqR
by=zeros(ie_tot,jh_tot,ke_tot);
x%G3L\5
bz=zeros(ie_tot,je_tot,kh_tot);
g>@JGzMLP
%***********************************************************************
pN%&`]Wev
% Initialize update coefficient arrays
0M_oFx
%***********************************************************************
9t"Rw ns
C1ex=zeros(size(ex));
0mY Y:?v
C2ex=zeros(size(ex));
IU%|K~_n
C3ex=zeros(size(ex));
K9lgDk"i
C4ex=zeros(size(ex));
W(s4R,j
C5ex=zeros(size(ex));
RdTM5ANT
C6ex=zeros(size(ex));
aLJm%uW6m&
C1ey=zeros(size(ey));
yGZsNd {a&
C2ey=zeros(size(ey));
|"3<\$[
C3ey=zeros(size(ey));
{m.$EoS
C4ey=zeros(size(ey));
_!\d?]Ya
C5ey=zeros(size(ey));
u/zBz*zh
C6ey=zeros(size(ey));
}{o!
C1ez=zeros(size(ez));
du3f'=q6|
C2ez=zeros(size(ez));
\*xB<mq
C3ez=zeros(size(ez));
ETe4I`d{
C4ez=zeros(size(ez));
~&?bU]F
C5ez=zeros(size(ez));
'ZfgCu)St
C6ez=zeros(size(ez));
Ey46JO"
D1hx=zeros(size(hx));
%@/^UE:
D2hx=zeros(size(hx));
'$K E=Jy
D3hx=zeros(size(hx));
g`7XE
D4hx=zeros(size(hx));
"s*-dZO
D5hx=zeros(size(hx));
#o.e (C
D6hx=zeros(size(hx));
T~TP
D1hy=zeros(size(hy));
!>8~R2
D2hy=zeros(size(hy));
*T|B'80
D3hy=zeros(size(hy));
-4a9 BE".
D4hy=zeros(size(hy));
#WpkL]g2+%
D5hy=zeros(size(hy));
Hcq.Lq;2:
D6hy=zeros(size(hy));
WNjwv/
D1hz=zeros(size(hz));
0B NLTRv
D2hz=zeros(size(hz));
O !L`0 =%c
D3hz=zeros(size(hz));
P3$eomX'
D4hz=zeros(size(hz));
Ccf/hA#mb
D5hz=zeros(size(hz));
&NE e-cb[
D6hz=zeros(size(hz));
[VCC+_
%***********************************************************************
)ZJvx%@i
% Update coefficients, as described in Section 7.8.2.
^QB[;g.O
%
Lsmcj{1d
% In order to simplify the update equations used in the time-stepping
_FLEz|%~
% loop, we implement UPML update equations throughout the entire
d2 ^}ooE
% grid. In the main grid, the electric-field update coefficients of
;?-AFd\i
% Equations 7.91a-f and the correponding magnetic field update
c?p^!zG
% coefficients extracted from Equations 7.89 and 7.90 are simplified
"/#JC}]
% for the main grid (free space) and calculated below.
S&op|Z)1
%
?9b9{c'an
%***********************************************************************
]n22+]D
C1=1.0;
xvr5$x|h
C2=dt;
mP(3[a_Q
C3=1.0;
K"}fD;3
C4=1.0/2.0/epsr/epsr/epsz/epsz;
'Ts:.
C5=2.0*epsr*epsz;
ou|emAV
C6=2.0*epsr*epsz;
/HC:H,"i
D1=1.0;
n/H OP
D2=dt;
`zwz
D3=1.0;
f-=\qSo
D4=1.0/2.0/epsr/epsz/mur/muz;
H"Pb)t
D5=2.0*epsr*epsz;
1^p/#jt
D6=2.0*epsr*epsz;
(L_-!=e
%***********************************************************************
Lpchla$
% Initialize main grid update coefficients
iHK~?qd}
%***********************************************************************
GXNf@&
C1ex(:,jh_bc:jh_tot-upml,:)=C1;
Zo9<96I&
C2ex(:,jh_bc:jh_tot-upml,:)=C2;
CT|+?
C3ex(:,:,kh_bc:kh_tot-upml)=C3;
US6_5>/
C4ex(:,:,kh_bc:kh_tot-upml)=C4;
PxHFH pL
C5ex(ih_bc:ie_tot-upml,:,:)=C5;
:QCL9QZ'
C6ex(ih_bc:ie_tot-upml,:,:)=C6;
29R-Up!SVN
C1ey(:,:,kh_bc:kh_tot-upml)=C1;
=P-&dN
C2ey(:,:,kh_bc:kh_tot-upml)=C2;
WeI+|V$
C3ey(ih_bc:ih_tot-upml,:,:)=C3;
XC4Z ,,ah"
C4ey(ih_bc:ih_tot-upml,:,:)=C4;
L"L3n,%F
C5ey(:,jh_bc:je_tot-upml,:)=C5;
LSo!_tY
C6ey(:,jh_bc:je_tot-upml,:)=C6;
T5BZD +Ta
C1ez(ih_bc:ih_tot-upml,:,:)=C1;
::L2zVq5V
C2ez(ih_bc:ih_tot-upml,:,:)=C2;
*dzZOe>,
C3ez(:,jh_bc:jh_tot-upml,:)=C3;
YeX*IZX8
C4ez(:,jh_bc:jh_tot-upml,:)=C4;
B~Q-V&@o
C5ez(:,:,kh_bc:ke_tot-upml)=C5;
+Q*`kg'
C6ez(:,:,kh_bc:ke_tot-upml)=C6;
x%P|T3Qy5
D1hx(:,jh_bc:je_tot-upml,:)=D1;
"(koR Q
D2hx(:,jh_bc:je_tot-upml,:)=D2;
"q4tvcK.
D3hx(:,:,kh_bc:ke_tot-upml)=D3;
e_vsiT
D4hx(:,:,kh_bc:ke_tot-upml)=D4;
"}]`64?
D5hx(ih_bc:ih_tot-upml,:,:)=D5;
adON&<
D6hx(ih_bc:ih_tot-upml,:,:)=D6;
85{m+1O~
D1hy(:,:,kh_bc:ke_tot-upml)=D1;
8#I>`z^F
D2hy(:,:,kh_bc:ke_tot-upml)=D2;
GN.Oa$
D3hy(ih_bc:ie_tot-upml,:,:)=D3;
ntiS7g e1
D4hy(ih_bc:ie_tot-upml,:,:)=D4;
]6&NIz`:,
D5hy(:,jh_bc:jh_tot-upml,:)=D5;
prBLNZp
D6hy(:,jh_bc:jh_tot-upml,:)=D6;
snV*gSUH
D1hz(ih_bc:ie_tot-upml,:,:)=D1;
3:%k pnO
D2hz(ih_bc:ie_tot-upml,:,:)=D2;
q>q:ZV
D3hz(:,jh_bc:je_tot-upml,:)=D3;
9N]Xa
D4hz(:,jh_bc:je_tot-upml,:)=D4;
<Ox[![SR
D5hz(:,:,kh_bc:kh_tot-upml)=D5;
^6 6!f 5^W
D6hz(:,:,kh_bc:kh_tot-upml)=D6;
yoi4w 7:
%***********************************************************************
k_=SDm a
% Fill in PML regions
&4'<