登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
时域有限差分法 FDTD
>
3d-UPML程序,大家都来看看顺便给我解答一下疑 ..
发帖
回复
1
2
3
4
5930
阅读
31
回复
[
求助
]
3d-UPML程序,大家都来看看顺便给我解答一下疑问(有些疑问解决的地方我给出了注释)
离线
wq_463
UID :20925
注册:
2008-11-06
登录:
2021-04-22
发帖:
227
等级:
仿真三级
0楼
发表于: 2009-01-02 16:24:53
学习这个程序有短时间了,得到了论坛上不少朋友的指点感谢herosword师兄和gwzhao版主的帮助,还有网上一些朋友帮助,现在我把一些别人的讲解在程序后面注释,当然还有一些细节问题需要大家来讨论,帮助解决。
4.,KEt'H
%***********************************************************************
[K"U_b}w
% 3-D FDTD code with UPML absorbing boundary conditions
DBqg_v
%***********************************************************************
[]GthF
%
?/o2#iJx
% Program author: Keely J. Willis, Graduate Student
N1D6D$s 0
% UW Computational Electromagnetics Laboratory
+Q@/F~1@6@
% Director: Susan C. Hagness
))%@@l[
% Department of Electrical and Computer Engineering
I}6DoLbV
% University of Wisconsin-Madison
(#fm (@T
% 1415 Engineering Drive
3bT6W,J4T
% Madison, WI 53706-1691
fcgDU *A%
% [url=mailto:kjwillis@wisc.edu]kjwillis@wisc.edu[/url]
J=f:\]@Oy
%
GI 0x>Z+
% Copyright 2005
fW_}!`:
%
Fw(b1 d>E
% This MATLAB M-file implements the finite-difference time-domain
2N8rM}?90
% solution of Maxwell's curl equations over a three-dimensional
v9j4|w
% Cartesian space lattice comprised of uniform cubic grid cells.
hj[+d%YZY"
%
*/0vJz%<.M
% The dimensions of the computational domain are 8.2 cm
+YGw4{\EL
% (x-direction), 3.4 cm (y-direction), and 3.2 cm (z-direction).
d,GtH)( s
% The grid is terminated with UPML absorbing boundary conditions.
lM@<_=2
%
4jC4X*
% An electric current source comprised of two collinear Jz components
W\ 1bE(AwZ
% (realizing a Hertzian dipole) excites a radially propagating wave.
~zXG<}n
% The current source is located in the center of the grid. The
|_hioMVz
% source waveform is a differentiated Gaussian pulse given by
PfwI@%2
% J(t)=J0*(t-t0)*exp(-(t-t0)^2/tau^2),
CT$& zEIm
% where tau=50 ps. The FWHM spectral bandwidth of this zero-dc-
>N+bU{s
% content pulse is approximately 7 GHz. The grid resolution
~!a~C~_
% (dx = 2 mm) was chosen to provide at least 10 samples per
>!HfH(is\
% wavelength up through 15 GHz.
el2*\(XT
%
\Owful
% To execute this M-file, type "fdtd3D_UPML" at the MATLAB prompt.
}}4sh5z
%
fPh}l
% This code has been tested in the following Matlab environments:
aTL8l.c2
% Matlab version 6.1.0.450 Release 12.1 (May 18, 2001)
Q1O_CC}
% Matlab version 6.5.1.199709 Release 13 Service Pack 1 (August 4, 2003)
`:-@E2
% Matlab version 7.0.0.19920 R14 (May 6, 2004)
BR&Qw'O%
% Matlab version 7.0.1.24704 R14 Service Pack 1 (September 13, 2004)
yV 9]_k
% Matlab version 7.0.4.365 R14 Service Pack 2 (January 29, 2005)
d- Z+fz
%
7G<KrKal
% Note: if you are using Matlab version 6.x, you may wish to make
I,C AFq
% one or more of the following modifications to this code:
2A@Y&g(6T7
% --uncomment line numbers 485 and 486
78^UgO/
% --comment out line numbers 552 and 561
4~m.#6MT
%
Zq\RNZ}
%***********************************************************************
2$j Ot}
clear
j#Ky0+@V
%***********************************************************************
zkT`] @`J
% Fundamental constants
lRa 3v Ng
%***********************************************************************
#Lhj0M;a
cc=2.99792458e8;
]Omb :
muz=4.0*pi*1.0e-7;
xN{"%>Mx
epsz=1.0/(cc*cc*muz);
w(vE2Y ?
etaz=sqrt(muz/epsz);%真空中波阻抗匹配
q 2_N90u
%***********************************************************************
T!^?d5uW#
% Material parameters
7\\~xSXh
%***********************************************************************
zAkc67:
mur=1.0;
S:2u3th7
epsr=1.0;
8xD<A|
eta=etaz*sqrt(mur/epsr);
${E[pT
%***********************************************************************
.b_0k<M!p
% Grid parameters
EMVoTW)z
%
CN8@c!mB
% Each grid size variable name describes the number of sampled points
#x4h_K Y
% for a particular field component in the direction of that component.
2$SofG6D}
% Additionally, the variable names indicate the region of the grid
pr[B$X.V
% for which the dimension is relevant. For example, ie_tot is the
K#JabT
% number of sample points of Ex along the x-axis in the total
(T%F!2i([U
% computational grid, and jh_bc is the number of sample points of Hy
1Rb XM n
% along the y-axis in the y-normal UPML regions.
#Vn>ue+?
%
!BvTJ-e)F
%***********************************************************************
p ,[XT`q^
ie=41; % Size of main grid
niBjq#bJi
je=17;
?' ez.a}
ke=16;
JA SR
ih=ie+1;
_v~D{H&}
jh=je+1;
y'0dl "Dy\
kh=ke+1;
OW63^wA`s
upml=10; % Thickness of PML boundaries
nyl8=F:V
ih_bc=upml+1;
<y\ Z#z
jh_bc=upml+1;
$tt0D?$4
kh_bc=upml+1;
St~SiTJU
ie_tot=ie+2*upml; % Size of total computational domain
.@8m\
je_tot=je+2*upml;
w$(0V$l_
ke_tot=ke+2*upml;
qmue!Fv#g
ih_tot=ie_tot+1;
HP4'8#3o
jh_tot=je_tot+1;
; mo\ yW1
kh_tot=ke_tot+1;
90y9~.v
is=round(ih_tot/2); % Location of z-directed current source
ATMogxh
js=round(jh_tot/2);
iXG>j.w{79
ks=round(ke_tot/2);
r:WgjjA%
%***********************************************************************
oM18aR&
% Fundamental grid parameters
Bp$+ F/
%***********************************************************************
@sgT[P*ut
delta=0.002;
8f{}ce'E*
dt=delta*sqrt(epsr*mur)/(2.0*cc);%?
c:@OX[##
nmax=200;
kYI(<oTY~
%***********************************************************************
UpszCY4
% Differentiated Gaussian pulse excitation
qUDz(bFk/
%***********************************************************************
UgD'Bi
rtau=50.0e-12;
}`<>$2b
tau=rtau/dt;
*Sz{DE1U
ndelay=3*tau;%这个延迟我个人认为是电磁波在场中传播达到时谐状态所要的时间
C<wj?!v,F[
J0=-1.0*epsz;%
Rvu3Qo+
%***********************************************************************
<<W.x)#:
% Initialize field arrays
FVC2 XxP
%***********************************************************************
Qa7S'(
ex=zeros(ie_tot,jh_tot,kh_tot); %这个地方电场量的初始赋值,X方向比y,z方向多一个(这个地方我还不是很理解)后面的一次类推。
8[`^(O#\E
ey=zeros(ih_tot,je_tot,kh_tot);
iw~V_y4
ez=zeros(ih_tot,jh_tot,ke_tot);
aG8D%i0
dx=zeros(ie_tot,jh_tot,kh_tot);
|W~V@n8"6
dy=zeros(ih_tot,je_tot,kh_tot);
RaM#@D7
dz=zeros(ih_tot,jh_tot,ke_tot);
aaf_3UH.B
hx=zeros(ih_tot,je_tot,ke_tot);
K9I,Q$&xX
Z$#ZYD
hy=zeros(ie_tot,jh_tot,ke_tot);
'4^V4i
hz=zeros(ie_tot,je_tot,kh_tot);
rjpafGCp
bx=zeros(ih_tot,je_tot,ke_tot);
k+q6U[ce
by=zeros(ie_tot,jh_tot,ke_tot);
+2au ;^N
bz=zeros(ie_tot,je_tot,kh_tot);
CyK$XDHa
%***********************************************************************
JV?RgFy
% Initialize update coefficient arrays
_/sf@R
%***********************************************************************
e`Zg7CaDd
C1ex=zeros(size(ex)); %迭代系数赋初始值
LL$,<q%(P
C2ex=zeros(size(ex));
Y)4Nydq
C3ex=zeros(size(ex));
R26tQbwE
C4ex=zeros(size(ex));
rlO%%Qn`
C5ex=zeros(size(ex));
)QSt7g|OF
C6ex=zeros(size(ex));
?N!j.E4=
C1ey=zeros(size(ey));
8SCW.;0
C2ey=zeros(size(ey));
+U_-Lq )
C3ey=zeros(size(ey));
]|$$:e^U9
C4ey=zeros(size(ey));
@)2V"FE4i
C5ey=zeros(size(ey));
NW4 s'roP
C6ey=zeros(size(ey));
ev: !,}]w
C1ez=zeros(size(ez));
|`(?<m
C2ez=zeros(size(ez));
^;k _
C3ez=zeros(size(ez));
!k>H e*M}P
C4ez=zeros(size(ez));
1$!RKqT
C5ez=zeros(size(ez));
-o!,,XYj .
C6ez=zeros(size(ez));
q5\LdI2
D1hx=zeros(size(hx));
H-cBXp5z
D2hx=zeros(size(hx));
9+is?Pj
D3hx=zeros(size(hx));
@;T#+!
D4hx=zeros(size(hx));
Am0.c0h
D5hx=zeros(size(hx));
Er/5 ,
D6hx=zeros(size(hx));
i[t=@^|
D1hy=zeros(size(hy));
i!d7,>l+Q~
D2hy=zeros(size(hy));
|b-Zy~6
D3hy=zeros(size(hy));
`Z7ITvF>
D4hy=zeros(size(hy));
3@cJ=
D5hy=zeros(size(hy));
't]EkH]BC
D6hy=zeros(size(hy));
X+gz+V/
D1hz=zeros(size(hz));
0h@%q;g
D2hz=zeros(size(hz));
Bbt8fJA~
D3hz=zeros(size(hz));
7f\^VG
D4hz=zeros(size(hz));
M(h H#_$
D5hz=zeros(size(hz));
SJ[@fUxO)
D6hz=zeros(size(hz));
6:EH5IO
%***********************************************************************
0rm;)[SjF
% Update coefficients, as described in Section 7.8.2.
w)m0Z4*
%
6pn@`UK
% In order to simplify the update equations used in the time-stepping
Tx!m6B`Y
% loop, we implement UPML update equations throughout the entire
~oW8GQ
% grid. In the main grid, the electric-field update coefficients of
j3[OY
% Equations 7.91a-f and the correponding magnetic field update
P7x?!71?L
% coefficients extracted from Equations 7.89 and 7.90 are simplified
>KClH'R2
% for the main grid (free space) and calculated below.
eRx[&-c
%
nog\,NT
%***********************************************************************
r4NT`&`g?
C1=1.0; %自由空间的电导率为0带入公式可以得到,下面的系数也是如此
;~Gpw/]5E
C2=dt;
hTtp-e`
C3=1.0;
UWWD8~:
C4=1.0/2.0/epsr/epsr/epsz/epsz;
Ae_ E;[mj
C5=2.0*epsr*epsz;
4Ig{#}<
C6=2.0*epsr*epsz;
/L|}Y242
D1=1.0;
qVRO"/R
D2=dt;
e>zk3\D!
D3=1.0;
hL{B9?
D4=1.0/2.0/epsr/epsz/mur/muz;
zHs
D5=2.0*epsr*epsz;
3D09P5$W
D6=2.0*epsr*epsz;
S7~F*CGBh
%***********************************************************************
{5tEsv
% Initialize main grid update coefficients
T4}?w
%***********************************************************************
f93X5hFnF
C1ex(:,jh_bc:jh_tot-upml,:)=C1; %总场区域的系数定义
W &wDH
C2ex(:,jh_bc:jh_tot-upml,:)=C2;
XX[Wwt
C3ex(:,:,kh_bc:kh_tot-upml)=C3;
"g:&Ge*X
C4ex(:,:,kh_bc:kh_tot-upml)=C4;
^$Io;*N4
C5ex(ih_bc:ie_tot-upml,:,:)=C5;
qM:)daS1w
C6ex(ih_bc:ie_tot-upml,:,:)=C6;
' bw, K*
C1ey(:,:,kh_bc:kh_tot-upml)=C1;
oJ@PJvmR&a
C2ey(:,:,kh_bc:kh_tot-upml)=C2;
JdYF&~
C3ey(ih_bc:ih_tot-upml,:,:)=C3;
!zkEh9G
C4ey(ih_bc:ih_tot-upml,:,:)=C4;
yg[;
C5ey(:,jh_bc:je_tot-upml,:)=C5;
?a0}^:6
C6ey(:,jh_bc:je_tot-upml,:)=C6;
WmVw>.]@~
C1ez(ih_bc:ih_tot-upml,:,:)=C1;
ccRk4xR
C2ez(ih_bc:ih_tot-upml,:,:)=C2;
]ifHA# z`~
C3ez(:,jh_bc:jh_tot-upml,:)=C3;
7n95>as
C4ez(:,jh_bc:jh_tot-upml,:)=C4;
'=b&)HbeK
C5ez(:,:,kh_bc:ke_tot-upml)=C5;
muX4 Y1M_
C6ez(:,:,kh_bc:ke_tot-upml)=C6;
_}D?+x,C8
D1hx(:,jh_bc:je_tot-upml,:)=D1;
5NF&LM;i(
D2hx(:,jh_bc:je_tot-upml,:)=D2;
=+-.5M
D3hx(:,:,kh_bc:ke_tot-upml)=D3;
4e#K.HU_
D4hx(:,:,kh_bc:ke_tot-upml)=D4;
4p.{G%h
D5hx(ih_bc:ih_tot-upml,:,:)=D5;
u4+uGYr*@
D6hx(ih_bc:ih_tot-upml,:,:)=D6;
W>|b98NPu
D1hy(:,:,kh_bc:ke_tot-upml)=D1;
%^%-h}1
D2hy(:,:,kh_bc:ke_tot-upml)=D2;
B*iz+"H
D3hy(ih_bc:ie_tot-upml,:,:)=D3;
VUv.Tx]Z[
D4hy(ih_bc:ie_tot-upml,:,:)=D4;
hic$13KuP
D5hy(:,jh_bc:jh_tot-upml,:)=D5;
.@3u3i64'
D6hy(:,jh_bc:jh_tot-upml,:)=D6;
F Hcqu_;J
D1hz(ih_bc:ie_tot-upml,:,:)=D1;
K y4y
D2hz(ih_bc:ie_tot-upml,:,:)=D2;
kt3#_d^El
D3hz(:,jh_bc:je_tot-upml,:)=D3;
O/^w! :z'
D4hz(:,jh_bc:je_tot-upml,:)=D4;
^$,kTU'=
D5hz(:,:,kh_bc:kh_tot-upml)=D5;
*4^]?Y\*
D6hz(:,:,kh_bc:kh_tot-upml)=D6;
}~CZqIP
%***********************************************************************
1&pP}v ?
% Fill in PML regions
taEMr> /
%
pVa|o&,
% PML theory describes a continuous grading of the material properties
lg
% over the PML region. In the FDTD grid it is necessary to discretize
RHAr[$
% the grading by averaging the material properties over a grid cell
{uM{5GSL
% width centered on each field component. As an example of the
@?=)}2=|?i
% implementation of this averaging, we take the integral of the
g5 |\G%dOt
% continuous sigma(x) in the PML region
h-rj
%
Xsn - +e
% sigma_i = integral(sigma(x))/delta
~0'l,
%
'*ICGKoT
% where the integral is over a single grid cell width in x, and is
P"~T*Qq-R
% bounded by x1 and x2. Applying this to the polynomial grading of
~ kJpB t7M
% Equation 7.60a produces
6:z&ukqE
%
3<lhoD
% sigma_i = (x2^(m+1)-x1^(m+1))*sigmam/(delta*(m+1)*d^m)
i8) :0
%
nJ#@W b@
% where sigmam is the maximum value of sigma as described by Equation
WI!z92qq[
% 7.62.
U(]5U^
%
h16Nr x
% The definitions of x1 and x2 depend on the position of the field
2y7q x1$C
% component within the grid cell. We have either
,h`D(,?X
%
M)pi)$&c
% x1 = (i-0.5)*delta, x2 = (i+0.5)*delta
{]Iu">*
%
p33GKg0i+(
% or
2,Dc]oj
%
842+KLS
% x1 = (i)*delta, x2 = (i+1)*delta
jTgh+j]AP
%
hJ*E"{xs
% where i varies over the PML region.
JI,hy <3l0
%
%R"/`N9R,
%***********************************************************************
RTY4%6]O
rmax=exp(-16); %desired reflection error, designated as R(0) in Equation 7.62
!skiD}zd1
orderbc=4; %order of the polynomial grading, designated as m in Equation 7.60a,b
5XUI7Q%
% x-varying material properties
Kcdd=2 [T
delbc=upml*delta; %PML的厚度
GO3YXO33
sigmam=-log(rmax)*(orderbc+1.0)/(2.0*eta*delbc); %参见Taflove书的7。62式
a4.: i
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1.0));
Aq]'.J=4
kmax=1; %这个地方不是很理解
&