登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
时域有限差分法 FDTD
>
3d-UPML程序,大家都来看看顺便给我解答一下疑 ..
发帖
回复
1
2
3
4
5934
阅读
31
回复
[
求助
]
3d-UPML程序,大家都来看看顺便给我解答一下疑问(有些疑问解决的地方我给出了注释)
离线
wq_463
UID :20925
注册:
2008-11-06
登录:
2021-04-22
发帖:
227
等级:
仿真三级
0楼
发表于: 2009-01-02 16:24:53
学习这个程序有短时间了,得到了论坛上不少朋友的指点感谢herosword师兄和gwzhao版主的帮助,还有网上一些朋友帮助,现在我把一些别人的讲解在程序后面注释,当然还有一些细节问题需要大家来讨论,帮助解决。
'gC_)rK*
%***********************************************************************
sf)EMh3Z
% 3-D FDTD code with UPML absorbing boundary conditions
X-6de>=
%***********************************************************************
cq}EZ@ .
%
[fAV5U
% Program author: Keely J. Willis, Graduate Student
-I8=T]_D
% UW Computational Electromagnetics Laboratory
oW ::hB
% Director: Susan C. Hagness
+x0!*3q
% Department of Electrical and Computer Engineering
/|tJ6T1LrB
% University of Wisconsin-Madison
Jm xH"7hTE
% 1415 Engineering Drive
oB}BU`-l
% Madison, WI 53706-1691
YC++&Nk
% [url=mailto:kjwillis@wisc.edu]kjwillis@wisc.edu[/url]
(s.0PO`
%
,?>s>bHV
% Copyright 2005
~Sj9GxTe
%
NW]Lj>0Y
% This MATLAB M-file implements the finite-difference time-domain
KN<S}3MN
% solution of Maxwell's curl equations over a three-dimensional
7gf05Z'=
% Cartesian space lattice comprised of uniform cubic grid cells.
7 HIeJ
%
h2Ld[xvCu%
% The dimensions of the computational domain are 8.2 cm
&"yx<&c}
% (x-direction), 3.4 cm (y-direction), and 3.2 cm (z-direction).
&e E=<x
% The grid is terminated with UPML absorbing boundary conditions.
,:%CB"J
%
"W6uV!
% An electric current source comprised of two collinear Jz components
A\4D79>x
% (realizing a Hertzian dipole) excites a radially propagating wave.
}Yb[
% The current source is located in the center of the grid. The
b$N2z
% source waveform is a differentiated Gaussian pulse given by
>3p\m
% J(t)=J0*(t-t0)*exp(-(t-t0)^2/tau^2),
4!Fo$9
% where tau=50 ps. The FWHM spectral bandwidth of this zero-dc-
|iak z|])
% content pulse is approximately 7 GHz. The grid resolution
]{3)^axW;
% (dx = 2 mm) was chosen to provide at least 10 samples per
Of*Pw[vD
% wavelength up through 15 GHz.
.nrMfl_
%
zQcL|(N
% To execute this M-file, type "fdtd3D_UPML" at the MATLAB prompt.
Hx"ob_^'7
%
d' !]ZWe
% This code has been tested in the following Matlab environments:
7%5z p|3
% Matlab version 6.1.0.450 Release 12.1 (May 18, 2001)
o_XflzC
% Matlab version 6.5.1.199709 Release 13 Service Pack 1 (August 4, 2003)
3@kf@Vf
% Matlab version 7.0.0.19920 R14 (May 6, 2004)
kVkU)hqR
% Matlab version 7.0.1.24704 R14 Service Pack 1 (September 13, 2004)
[%q@]\U$s
% Matlab version 7.0.4.365 R14 Service Pack 2 (January 29, 2005)
|:nn>E}ZA/
%
smlpD3?va
% Note: if you are using Matlab version 6.x, you may wish to make
"|EM;o
% one or more of the following modifications to this code:
:ci5r;^
% --uncomment line numbers 485 and 486
NCiW^#b
% --comment out line numbers 552 and 561
Vc 1\i
%
fz|cnU
%***********************************************************************
'*K : lx
clear
CyJEY-
%***********************************************************************
;Y00TGU
% Fundamental constants
uZNTHD
%***********************************************************************
v\c>b:AofD
cc=2.99792458e8;
A 9( x
muz=4.0*pi*1.0e-7;
/KFfU1
epsz=1.0/(cc*cc*muz);
} df W%{
etaz=sqrt(muz/epsz);%真空中波阻抗匹配
zwhe
%***********************************************************************
T. }1/S"m
% Material parameters
WffQ :L?
%***********************************************************************
<fZyAa3}
mur=1.0;
WJQvB=D&
epsr=1.0;
S=MEG+Ad
eta=etaz*sqrt(mur/epsr);
Njxv4cc
%***********************************************************************
"H7dft/
% Grid parameters
Z/W:97M
%
*1uKr9
% Each grid size variable name describes the number of sampled points
FtpK)9/4
% for a particular field component in the direction of that component.
-)w@f~Q
% Additionally, the variable names indicate the region of the grid
CNih6R
% for which the dimension is relevant. For example, ie_tot is the
pV9IHs}
% number of sample points of Ex along the x-axis in the total
(/z_Q{"N
% computational grid, and jh_bc is the number of sample points of Hy
C].iCxn
% along the y-axis in the y-normal UPML regions.
*{YlN}vA
%
m}C>ti`VD
%***********************************************************************
ohRjvJ'v|
ie=41; % Size of main grid
VU#`oJ:{
je=17;
bfFeBBi
ke=16;
SzAJ2:qhl
ih=ie+1;
@ju@WY45$^
jh=je+1;
Hkk/xNP
kh=ke+1;
vleS2-]|
upml=10; % Thickness of PML boundaries
eX?OYDDC0j
ih_bc=upml+1;
UvJ}b
jh_bc=upml+1;
%>yG+Od5Z
kh_bc=upml+1;
]_Vx{oT7
ie_tot=ie+2*upml; % Size of total computational domain
VyXKZ%\dQ/
je_tot=je+2*upml;
VF&(8X\
ke_tot=ke+2*upml;
|ax3sAg
ih_tot=ie_tot+1;
{Bk[rCl
jh_tot=je_tot+1;
n4s+>|\M
kh_tot=ke_tot+1;
?ME6+Z\
is=round(ih_tot/2); % Location of z-directed current source
- \5v^l
js=round(jh_tot/2);
rxe>}ZO
ks=round(ke_tot/2);
Cl5uS%g
%***********************************************************************
?~l6K(*2
% Fundamental grid parameters
cm&nd'A't
%***********************************************************************
PxTwPl
delta=0.002;
:nh_k4S@v
dt=delta*sqrt(epsr*mur)/(2.0*cc);%?
:WjpzgPuN
nmax=200;
wu7Lk3
%***********************************************************************
$~~Jw]
% Differentiated Gaussian pulse excitation
Za/-i"U
%***********************************************************************
3r<~Q7e
rtau=50.0e-12;
%oF}HF.
tau=rtau/dt;
9/{(%XwX
ndelay=3*tau;%这个延迟我个人认为是电磁波在场中传播达到时谐状态所要的时间
spGb!Y`mR
J0=-1.0*epsz;%
9`T)@Uj2n
%***********************************************************************
~xbe~$$Q@
% Initialize field arrays
+dWDxguE{w
%***********************************************************************
J; 3{3
ex=zeros(ie_tot,jh_tot,kh_tot); %这个地方电场量的初始赋值,X方向比y,z方向多一个(这个地方我还不是很理解)后面的一次类推。
]S&&|Fc
ey=zeros(ih_tot,je_tot,kh_tot);
v6[!o<@"a
ez=zeros(ih_tot,jh_tot,ke_tot);
.sxcCrQE
dx=zeros(ie_tot,jh_tot,kh_tot);
uX"H4lO~
dy=zeros(ih_tot,je_tot,kh_tot);
|+"<wEKI
dz=zeros(ih_tot,jh_tot,ke_tot);
bo,_&4?
hx=zeros(ih_tot,je_tot,ke_tot);
0m7Y>0wC6T
5Iy|BRU(%
hy=zeros(ie_tot,jh_tot,ke_tot);
&)YQv Tzs
hz=zeros(ie_tot,je_tot,kh_tot);
}HL]yDO
bx=zeros(ih_tot,je_tot,ke_tot);
,QOG!T4
by=zeros(ie_tot,jh_tot,ke_tot);
~t@cO.c
bz=zeros(ie_tot,je_tot,kh_tot);
xVf|G_5$
%***********************************************************************
rR$h*
% Initialize update coefficient arrays
BIb4h
%***********************************************************************
__lM7LFL
C1ex=zeros(size(ex)); %迭代系数赋初始值
&Q9qq~
C2ex=zeros(size(ex));
QsGiclU
C3ex=zeros(size(ex));
4qN{n#{+]
C4ex=zeros(size(ex));
00<cYy
C5ex=zeros(size(ex));
gMv.V{vD
C6ex=zeros(size(ex));
3T31kQv{
C1ey=zeros(size(ey));
]O Z5fd
C2ey=zeros(size(ey));
>lmi@UN|k
C3ey=zeros(size(ey));
~Xw"}S5
C4ey=zeros(size(ey));
~{?_p@&n
C5ey=zeros(size(ey));
OGBHos
C6ey=zeros(size(ey));
LZ\q37UV
C1ez=zeros(size(ez));
)r';lGh2#
C2ez=zeros(size(ez));
zUDg&-J3
C3ez=zeros(size(ez));
Hh%I0#
C4ez=zeros(size(ez));
7@C<oy_bb
C5ez=zeros(size(ez));
&*sP/z
C6ez=zeros(size(ez));
[M?}uK ^
D1hx=zeros(size(hx));
G=)i{oC
D2hx=zeros(size(hx));
B6=ebM`q
D3hx=zeros(size(hx));
cy*?&~;
D4hx=zeros(size(hx));
jy7\+i
D5hx=zeros(size(hx));
ImCe K
D6hx=zeros(size(hx));
!y#"l$"xK
D1hy=zeros(size(hy));
6f;fx}y
D2hy=zeros(size(hy));
|VKK#J/
D3hy=zeros(size(hy));
1ofKt=|=
D4hy=zeros(size(hy));
.\K_@M
D5hy=zeros(size(hy));
s|@6S8E
D6hy=zeros(size(hy));
.=U#eHBdAQ
D1hz=zeros(size(hz));
Gk967pC
D2hz=zeros(size(hz));
Us%T;gW
D3hz=zeros(size(hz));
_t:$XJ`bTk
D4hz=zeros(size(hz));
w^(<N7B3T
D5hz=zeros(size(hz));
2C2fGYu
D6hz=zeros(size(hz));
t4{rb, }W
%***********************************************************************
#XK2Ien)Z
% Update coefficients, as described in Section 7.8.2.
`id9j
%
01[NX? qEa
% In order to simplify the update equations used in the time-stepping
#1J &7F1
% loop, we implement UPML update equations throughout the entire
>82@Q^O
% grid. In the main grid, the electric-field update coefficients of
Kj V:|
% Equations 7.91a-f and the correponding magnetic field update
.ELGWF`>
% coefficients extracted from Equations 7.89 and 7.90 are simplified
|\w=u6jX
% for the main grid (free space) and calculated below.
<m:m &I 8@
%
$GYm6x\4
%***********************************************************************
~a%Z;Aj
C1=1.0; %自由空间的电导率为0带入公式可以得到,下面的系数也是如此
$J4 *U
C2=dt;
+ r!1<AAE$
C3=1.0;
Kfm5i Q
C4=1.0/2.0/epsr/epsr/epsz/epsz;
ot@|!V
C5=2.0*epsr*epsz;
NHB4y /2
C6=2.0*epsr*epsz;
Yj%U >),8
D1=1.0;
UYFwS/ RW}
D2=dt;
.#wqXRd
D3=1.0;
h"`ucC8X
D4=1.0/2.0/epsr/epsz/mur/muz;
_4TH4~cY
D5=2.0*epsr*epsz;
ktI/3Mb@
D6=2.0*epsr*epsz;
-g)9R%>-
%***********************************************************************
$m7?3/YG
% Initialize main grid update coefficients
:iFIQpk
%***********************************************************************
zG+R5:
C1ex(:,jh_bc:jh_tot-upml,:)=C1; %总场区域的系数定义
.id)VF-l
C2ex(:,jh_bc:jh_tot-upml,:)=C2;
;V^ 112|C
C3ex(:,:,kh_bc:kh_tot-upml)=C3;
u?>B)PW
C4ex(:,:,kh_bc:kh_tot-upml)=C4;
C?ulj9=Z
C5ex(ih_bc:ie_tot-upml,:,:)=C5;
vesJEaw7
C6ex(ih_bc:ie_tot-upml,:,:)=C6;
& +4gSr
C1ey(:,:,kh_bc:kh_tot-upml)=C1;
;_8#f%Y#R
C2ey(:,:,kh_bc:kh_tot-upml)=C2;
*ohL&