登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
时域有限差分法 FDTD
>
新手请教Traflove书中附带的2D程序
发帖
回复
1
2
3
3949
阅读
23
回复
[
求助
]
新手请教Traflove书中附带的2D程序
离线
wq_463
UID :20925
注册:
2008-11-06
登录:
2021-04-22
发帖:
227
等级:
仿真三级
0楼
发表于: 2008-12-20 19:45:32
— 本帖被 gwzhao 执行加亮操作(2008-12-21) —
这个程序有不少地方看不明啊,我把程序贴出来把不明白的地方打个问号,希望有人给解释一下
ec,Bu7'8
我的qq243640120,希望做PML的朋友能加我,大家共同交流
eNK6=D|
%***********************************************************************
E9 w"?_A)
% 2-D FDTD TE code with PML absorbing boundary conditions
WOeG3jMz?
%***********************************************************************
HqI[]T@
%
b\^1P;!'W
% Program author: Susan C. Hagness
[s+FX5' K
% Department of Electrical and Computer Engineering
ewdcAF5
% University of Wisconsin-Madison
B~E>=85z
% 1415 Engineering Drive
M96Nt&P`
% Madison, WI 53706-1691
I* PxQ
% 608-265-5739
% EYh*g{G
% [url=mailto:hagness@engr.wisc.edu]hagness@engr.wisc.edu[/url]
8PqlbLo1
%
R|k!w]
% Date of this version: February 2000
sY[!=` @
%
BC85#sbl
% This MATLAB M-file implements the finite-difference time-domain
hXD`OlX
% solution of Maxwell's curl equations over a two-dimensional
7H4\AG\>
% Cartesian space lattice comprised of uniform square grid cells.
#3O$B*gV6
%
/eBcPu"[Vb
% To illustrate the algorithm, a 6-cm-diameter metal cylindrical
\'X-><1
% scatterer in free space is modeled. The source excitation is
QO>)ug+
% a Gaussian pulse with a carrier frequency of 5 GHz.
)afH:
%
+f}w+
% The grid resolution (dx = 3 mm) was chosen to provide 20 samples
*&5./WEOH
% per wavelength at the center frequency of the pulse (which in turn
a# Uk:O!
% provides approximately 10 samples per wavelength at the high end
#'m#Q6`
% of the excitation spectrum, around 10 GHz).
]D^zTl3=q
%
S#0C^
% The computational domain is truncated using the perfectly matched
cpH*!*S
% layer (PML) absorbing boundary conditions. The formulation used
K<k\A@rv8H
% in this code is based on the original split-field Berenger PML. The
Z1h6Y>j
% PML regions are labeled as shown in the following diagram:
9%dO"t$-q
%
*c(J4
% ----------------------------------------------
+jN)$Y3Ya
% | | BACK PML | |
"HLh3L~
% ----------------------------------------------
Y3ypca&P9
% |L | /| R|
S] 4RGWn
% |E | (ib,jb) | I|
U ZL-mF:)&
% |F | | G|
DG=_E\"#
% |T | | H|
_QtW)\)5\
% | | MAIN GRID | T|
Ko!a`I2M}
% |P | | |
a~k*Gd(
% |M | | P|
fc<,kRp
% |L | (1,1) | M|
.B!L+M< [
% | |/ | L|
8SBa w'a
% ----------------------------------------------
fG<[zt\e
% | | FRONT PML | |
F)50 6
% ----------------------------------------------
)"Wy/P
%
lrgvY>E0
% To execute this M-file, type "fdtd2D" at the MATLAB prompt.
;p"#ZS7
% This M-file displays the FDTD-computed Ex, Ey, and Hz fields at
=T$2Qo8
% every 4th time step, and records those frames in a movie matrix,
"/x/]Qx2
% M, which is played at the end of the simulation using the "movie"
FC4hvO(/m
% command.
AY]rQ:I
%
Q@TeU#2Y
%***********************************************************************
T2t o!*T
clear
:UfaMe5
%***********************************************************************
; X/'ujg
% Fundamental constants
C@MJn)$4
%***********************************************************************
4)9Pgp:
cc=2.99792458e8; %speed of light in free space
pW&8 =Ew
muz=4.0*pi*1.0e-7; %permeability of free space
:io~{a#.2\
epsz=1.0/(cc*cc*muz); %permittivity of free space
YCBUc<)
freq=5.0e+9; %center frequency of source excitation
$wcV~'fM
lambda=cc/freq; %center wavelength of source excitation
"^t;V+Io
omega=2.0*pi*freq;
ZV!*ZpTe~
%***********************************************************************
'<wZe.Q!
% Grid parameters
km}E&ao
%***********************************************************************
OSK:Cb.-?F
ie=100; %number of grid cells in x-direction
b:&=W>r
je=50; %number of grid cells in y-direction
@iVEnb.'
ib=ie+1;
rD>q/,X=\
jb=je+1;
/pp;3JPf
is=15; %location of z-directed hard source
bR=TGL&
js=je/2; %location of z-directed hard source
gT|&tTS1@
dx=3.0e-3; %space increment of square lattice
=I$:-[(
dt=dx/(2.0*cc); %time step
]2z Gb5s"
nmax=300; %total number of time steps
oTeQY[%$
iebc=8; %thickness of left and right PML region
PkK#HD
jebc=8; %thickness of front and back PML region
?osYs<k \
rmax=0.00001;
1!R:}r3t
orderbc=2;
,f .#-
ibbc=iebc+1;
3H5<w4yk
jbbc=jebc+1;
E;r~8^9)
iefbc=ie+2*iebc; %x方向的总网格数
&RlYw#*1.
jefbc=je+2*jebc;
8yGo\\=T
ibfbc=iefbc+1;
2yV{y#\
jbfbc=jefbc+1;
Zk #C!]=
%***********************************************************************
XE|"n
% Material parameters
=V^8RlBi
%***********************************************************************
L ~$&+g
media=2; %?
\U?{m)N
eps=[1.0 1.0];
!_:|mu'
sig=[0.0 1.0e+7];
cV* 0+5
mur=[1.0 1.0];
"'c =(P
sim=[0.0 0.0];
ZQ~EaI9R
%***********************************************************************
!Mk]%
% Wave excitation
rzKn5Z
%***********************************************************************
a{iG0T.{Yh
rtau=160.0e-12;
n{E+r
tau=rtau/dt;
"oCXG`.k&
delay=3*tau;
Eqh&<]q
source=zeros(1,nmax);
HF%)ip+
for n=1:7.0*tau
5dLb`Gf
source(n)=sin(omega*(n-delay)*dt)*exp(-((n-delay)^2/tau^2)); %??????????
3UGdXufw
end
IUy5=Sl
%***********************************************************************
Rx4O?7;
% Field arrays
j2:A@a6
%***********************************************************************
U&6f:IV
ex=zeros(ie,jb); %fields in main grid
.7H*F9
ey=zeros(ib,je);
)eWg2w ]
hz=zeros(ie,je);
BeM|1pe.
exbcf=zeros(iefbc,jebc); %fields in front PML region
SA6.g2pFz
eybcf=zeros(ibfbc,jebc);
x{{ZV]
hzxbcf=zeros(iefbc,jebc);
R(A"6a8*
hzybcf=zeros(iefbc,jebc);
oSoU9_W
exbcb=zeros(iefbc,jbbc); %fields in back PML region
ACH!Gw~
eybcb=zeros(ibfbc,jebc);
j`"cU$NRM
hzxbcb=zeros(iefbc,jebc);
O:X|/g0Y
hzybcb=zeros(iefbc,jebc);
QsPL^ Ny
exbcl=zeros(iebc,jb); %fields in left PML region
x;/%`gKn8
eybcl=zeros(iebc,je);
oz?6$oE(bt
hzxbcl=zeros(iebc,je);
h!1CsLd[
hzybcl=zeros(iebc,je);
5?MKx!%
exbcr=zeros(iebc,jb); %fields in right PML region
!%YV0O0
eybcr=zeros(ibbc,je); %???????为什么跟LIFT的不一样呢
:;Wh!8+j
hzxbcr=zeros(iebc,je);
g8;JpP w
hzybcr=zeros(iebc,je);
>c@1UEwkm
%***********************************************************************
0Yc#fD
% Updating coefficients
$@L}/MO
%***********************************************************************
^ `Y1
for i=1:media
dRLvej,
eaf =dt*sig(i)/(2.0*epsz*eps(i));
N:rnH:g+:
ca(i)=(1.0-eaf)/(1.0+eaf);
86f/R c
cb(i)=dt/epsz/eps(i)/dx/(1.0+eaf);
f@J-6uQ7w
haf =dt*sim(i)/(2.0*muz*mur(i));
2ZFp(e^%
da(i)=(1.0-haf)/(1.0+haf);
tJ9`Ys
db(i)=dt/muz/mur(i)/dx/(1.0+haf);
B ? D|B
end
a.g:yWL\
%***********************************************************************
[3hOc/]s
% Geometry specification (main grid)
+DP{ _x)t
%***********************************************************************
f<( ysl1[
% Initialize entire main grid to free space
y:8Oc?
caex(1:ie,1:jb)=ca(1);
*mXs(u
cbex(1:ie,1:jb)=cb(1);
5I@2U vV8
caey(1:ib,1:je)=ca(1);
2o-Ie/"d\
cbey(1:ib,1:je)=cb(1);
0t}&32lL&
dahz(1:ie,1:je)=da(1);
TWJ%? /d
dbhz(1:ie,1:je)=db(1);
'|K408i
% Add metal cylinder
,46k8%WW
diam=20; % diameter of cylinder: 6 cm
m_1BB$lyP2
rad=diam/2.0; % radius of cylinder: 3 cm
J9/}ZD^
icenter=4*ie/5; % i-coordinate of cylinder's center
g R) )K)
jcenter=je/2; % j-coordinate of cylinder's center
ZIM 5$JdCv
for i=1:ie
W RVm^
for j=1:je
,(CIcDJ2U_
dist2=(i+0.5-icenter)^2 + (j-jcenter)^2;
*.Ceb%W7C
if dist2 <= rad^2
"npLl]XM
caex(i,j)=ca(2);
ZfN%JJOz(
cbex(i,j)=cb(2);
FG5t\!dt<
end
$v+t~b
dist2=(i-icenter)^2 + (j+0.5-jcenter)^2;
)~[hf,R5S
if dist2 <= rad^2
J;7O`5J
caey(i,j)=ca(2);
Zae$M0)
cbey(i,j)=cb(2);
mw&)j R$&
end
+t PqU6
end
[O(8izv
end
Gd%E337d
%***********************************************************************
= eDi8A*~
% Fill the PML regions
Az>gaJ/_
%***********************************************************************
fP:g}Z
delbc=iebc*dx;
v}\Nx[}
sigmam=-log(rmax/100.0)*epsz*cc*(orderbc+1)/(2*delbc);%??????????
3.s.&^
bcfactor=eps(1)*sigmam/(dx*(delbc^orderbc)*(orderbc+1));%???????????
B@2VI 1%
% FRONT region
,_2ZKO/k$
caexbcf(1:iefbc,1)=1.0;%???????我觉得Front和Back差不多,Rright和left差不多,大家能给我
O9]+Jd4W
解释一下F和R就是可以
QWV12t$v
cbexbcf(1:iefbc,1)=0.0;
V3$Yr"rZ;
for j=2:jebc
7{e*isV
y1=(jebc-j+1.5)*dx;
-V)DKf"f
y2=(jebc-j+0.5)*dx;
5m&Zq_Qe
sigmay=bcfactor*(y1^(orderbc+1)-y2^(orderbc+1));
IXef}%1N?
ca1=exp(-sigmay*dt/(epsz*eps(1)));
o Kfm=TbY
cb1=(1.0-ca1)/(sigmay*dx);
Do5)ilt
caexbcf(1:iefbc,j)=ca1;
];1Mg
cbexbcf(1:iefbc,j)=cb1;
B @8 ]!
end
V}kQXz"9
sigmay = bcfactor*(0.5*dx)^(orderbc+1);
myeez+@ m
ca1=exp(-sigmay*dt/(epsz*eps(1)));
&?#G)suP
cb1=(1-ca1)/(sigmay*dx);
NJraol
caex(1:ie,1)=ca1;
\4OX]{
cbex(1:ie,1)=cb1;
&*N;yW""f
caexbcl(1:iebc,1)=ca1;
K=82fF(-
cbexbcl(1:iebc,1)=cb1;
.d>TU bR;
caexbcr(1:iebc,1)=ca1;
wR= WS',
cbexbcr(1:iebc,1)=cb1;
&I$MV5)u
for j=1:jebc
6vQCghI
y1=(jebc-j+1)*dx;
qE&R.I!o
y2=(jebc-j)*dx;
%0!!998
sigmay=bcfactor*(y1^(orderbc+1)-y2^(orderbc+1));
5u-jjUO
sigmays=sigmay*(muz/(epsz*eps(1)));
h+7THMI
da1=exp(-sigmays*dt/muz);
nuip
db1=(1-da1)/(sigmays*dx);
<wZ2S3RNA
dahzybcf(1:iefbc,j)=da1;
-r5JP[0kP
dbhzybcf(1:iefbc,j)=db1;
/ `Glf|
caeybcf(1:ibfbc,j)=ca(1);
&{c.JDO
cbeybcf(1:ibfbc,j)=cb(1);
B#T4m]E/
dahzxbcf(1:iefbc,j)=da(1);
^xwnX=Np
dbhzxbcf(1:iefbc,j)=db(1);
V>&WZY
end
P[E5e+A)
% BACK region
mew,S)dq!
caexbcb(1:iefbc,jbbc)=1.0;
e$3{URg
cbexbcb(1:iefbc,jbbc)=0.0;
(}u2) 9
for j=2:jebc
6eh\-+=
y1=(j-0.5)*dx;
Y[ciT)
y2=(j-1.5)*dx;
sox0:9Oqnf
sigmay=bcfactor*(y1^(orderbc+1)-y2^(orderbc+1));
93*MY7j}
ca1=exp(-sigmay*dt/(epsz*eps(1)));
s8/y|HN^
cb1=(1-ca1)/(sigmay*dx);
'dstAlt?
caexbcb(1:iefbc,j)=ca1;
vP{22P
cbexbcb(1:iefbc,j)=cb1;
9=J+5V^qD<
end
YxUC.2V|7$
sigmay = bcfactor*(0.5*dx)^(orderbc+1);
AD=vYDR+
ca1=exp(-sigmay*dt/(epsz*eps(1)));
U- UD27
cb1=(1-ca1)/(sigmay*dx);
rVE!mi]%
caex(1:ie,jb)=ca1;
;5bzXW#U
cbex(1:ie,jb)=cb1;
1]i{b/ 4
caexbcl(1:iebc,jb)=ca1;
8(Ab NQ
cbexbcl(1:iebc,jb)=cb1;
eI7FbOze
caexbcr(1:iebc,jb)=ca1;
n@)Kf A)&
cbexbcr(1:iebc,jb)=cb1;
~<?+(V^D
for j=1:jebc
^"e|)4_5\
y1=j*dx;
D!- 78h
y2=(j-1)*dx;
dC7YVs_,#
sigmay=bcfactor*(y1^(orderbc+1)-y2^(orderbc+1));
M(alc9tn
sigmays=sigmay*(muz/(epsz*eps(1)));
hv.$p5UY*
da1=exp(-sigmays*dt/muz);
<n)J~B^
db1=(1-da1)/(sigmays*dx);
5DEK`#*
dahzybcb(1:iefbc,j)=da1;
`H.~#$
dbhzybcb(1:iefbc,j)=db1;
kIlc$:K^
caeybcb(1:ibfbc,j)=ca(1);
c05kHB$O
cbeybcb(1:ibfbc,j)=cb(1);
M[^
dahzxbcb(1:iefbc,j)=da(1);
Qt@_C*,P
dbhzxbcb(1:iefbc,j)=db(1);
+y$%S4>0tp
end
1yS[;
% LEFT region
W'BB FG
caeybcl(1,1:je)=1.0;
J.r^"K\
cbeybcl(1,1:je)=0.0;
ur,!-t(~t
for i=2:iebc
em+dQ15
x1=(iebc-i+1.5)*dx;
d@a FW
x2=(iebc-i+0.5)*dx;
NYoh6AR
sigmax=bcfactor*(x1^(orderbc+1)-x2^(orderbc+1));
2L<iIBSJwm
ca1=exp(-sigmax*dt/(epsz*eps(1)));
S~9K'\vO
cb1=(1-ca1)/(sigmax*dx);
aeQvIob@
caeybcl(i,1:je)=ca1;
G>/Gw90E
cbeybcl(i,1:je)=cb1;
.S l{m[nV8
caeybcf(i,1:jebc)=ca1;
GxL;@%B
cbeybcf(i,1:jebc)=cb1;
Ca&5"aki
caeybcb(i,1:jebc)=ca1;
`m.).Hda
cbeybcb(i,1:jebc)=cb1;
p=7{
end
.K=r.tf~
sigmax=bcfactor*(0.5*dx)^(orderbc+1);
(|<e4HfZL
ca1=exp(-sigmax*dt/(epsz*eps(1)));
L"|~,SVF
cb1=(1-ca1)/(sigmax*dx);
rfgkw
caey(1,1:je)=ca1;
&p)]Cl/`
cbey(1,1:je)=cb1;
&o$z[b
caeybcf(iebc+1,1:jebc)=ca1;
=r3 %jWH6
cbeybcf(iebc+1,1:jebc)=cb1;
G^`IfF-j
caeybcb(iebc+1,1:jebc)=ca1;
a5/6DK>
cbeybcb(iebc+1,1:jebc)=cb1;
5,I|beM
for i=1:iebc
Kyz!YB
x1=(iebc-i+1)*dx;
3++}4%w
x2=(iebc-i)*dx;
J3F-Yl|
sigmax=bcfactor*(x1^(orderbc+1)-x2^(orderbc+1));
4;]<#u
sigmaxs=sigmax*(muz/(epsz*eps(1)));
vU:FDkx*nn
da1=exp(-sigmaxs*dt/muz);
=q1=.VTn
db1=(1-da1)/(sigmaxs*dx);
&Hb;; Ic(
dahzxbcl(i,1:je)=da1;
(aAv7kB&
dbhzxbcl(i,1:je)=db1;
N:j,9p0,
dahzxbcf(i,1:jebc)=da1;
[]'gIF
dbhzxbcf(i,1:jebc)=db1;
#mI{D\UR
dahzxbcb(i,1:jebc)=da1;
G234UjN%
dbhzxbcb(i,1:jebc)=db1;
O T*C7=
caexbcl(i,2:je)=ca(1);
N%hV +># Z
cbexbcl(i,2:je)=cb(1);
OlW|qj
dahzybcl(i,1:je)=da(1);
Rr'#OxF
dbhzybcl(i,1:je)=db(1);
Aj854 L(!
end
|,3>A@
% RIGHT region
[z2XK4\e1T
caeybcr(ibbc,1:je)=1.0;
NtuO&{}i
cbeybcr(ibbc,1:je)=0.0;
h%9>js^~
for i=2:iebc
~6HpI0i
x1=(i-0.5)*dx;
cjf 8N:4N0
x2=(i-1.5)*dx;
\{Qd
sigmax=bcfactor*(x1^(orderbc+1)-x2^(orderbc+1));
wxa?.
ca1=exp(-sigmax*dt/(epsz*eps(1)));
hV(>}hb
cb1=(1-ca1)/(sigmax*dx);
|Va*=@&6J
caeybcr(i,1:je)=ca1;
0Jz5i4B
cbeybcr(i,1:je)=cb1;
oNyVRH ZH
caeybcf(i+iebc+ie,1:jebc)=ca1;
$2p=vi3
cbeybcf(i+iebc+ie,1:jebc)=cb1;
T<hS
caeybcb(i+iebc+ie,1:jebc)=ca1;
iP7 Cku}l
cbeybcb(i+iebc+ie,1:jebc)=cb1;
SXYH#p
end
}e7os0;s
sigmax=bcfactor*(0.5*dx)^(orderbc+1);
_2eRH@T
ca1=exp(-sigmax*dt/(epsz*eps(1)));
q&/<~RC*
cb1=(1-ca1)/(sigmax*dx);
[Eeanl&x>
caey(ib,1:je)=ca1;
9{D u)k
cbey(ib,1:je)=cb1;
'pCZx9*c
caeybcf(iebc+ib,1:jebc)=ca1;
mv5=>Xc6
cbeybcf(iebc+ib,1:jebc)=cb1;
i`m&X6)\j
caeybcb(iebc+ib,1:jebc)=ca1;
%h}Q f&U_
cbeybcb(iebc+ib,1:jebc)=cb1;
|[)k5nUQ|
for i=1:iebc
wLF;nzv
x1=i*dx;
XX85]49`%
x2=(i-1)*dx;
'jw?XtG
sigmax=bcfactor*(x1^(orderbc+1)-x2^(orderbc+1));
WrA!'I
sigmaxs=sigmax*(muz/(epsz*eps(1)));
=cwQG&as
da1=exp(-sigmaxs*dt/muz);
SdOa#U)
db1=(1-da1)/(sigmaxs*dx);
#41xzN
dahzxbcr(i,1:je) = da1;
HHT_ }_?
dbhzxbcr(i,1:je) = db1;
[~3[Tu( C
dahzxbcf(i+ie+iebc,1:jebc)=da1;
f<14-R=
dbhzxbcf(i+ie+iebc,1:jebc)=db1;
Lro[ |A
dahzxbcb(i+ie+iebc,1:jebc)=da1;
UZ5O%SF
dbhzxbcb(i+ie+iebc,1:jebc)=db1;
#.<Uy."z2
caexbcr(i,2:je)=ca(1);
;Av=/hU
cbexbcr(i,2:je)=cb(1);
aG"j9A~ &
dahzybcr(i,1:je)=da(1);
scf.>K2
dbhzybcr(i,1:je)=db(1);
r8.`W\SKX
end
eb6Ux
%***********************************************************************
<Km ^>9
% Movie initialization
)\S3Q
%***********************************************************************
>@b]t,rrK
subplot(3,1,1),pcolor(ex');
I~^t\iujs
shading flat;
f9" M^i
caxis([-80.0 80.0]);
mH1T|UI
axis([1 ie 1 jb]);
wzXIEWJ
colorbar;
?Uq;>
axis image;
v r=va5
axis off;
{7kJj(Ue
title(['Ex at time step = 0']);
~XzT~WxW
subplot(3,1,2),pcolor(ey');
N('=qp9
shading flat;
prHM}n{0
caxis([-80.0 80.0]);
Re=()M
axis([1 ib 1 je]);
'|I8byiK
colorbar;
xRX2u_f$<
axis image;
!lVOZ%
axis off;
Y X`BX$
title(['Ey at time step = 0']);
q 9e(YX>
subplot(3,1,3),pcolor(hz');
1zGD~[M
shading flat;
1^f7
caxis([-0.2 0.2]);
T*Dd% f
axis([1 ie 1 je]);
', WnT:
colorbar;
B(pxyv)
axis image;
F@]9oF
axis off;
#r=Jc8J_
title(['Hz at time step = 0']);
$U_M|Xa
rect=get(gcf,'Position');
2 c 2lK
rect(1:2)=[0 0];
TpAE 9S
M=moviein(nmax/4,gcf,rect);
yt'P,m
%***********************************************************************
6`PQP;
% BEGIN TIME-STEPPING LOOP
Y3_C':r
%***********************************************************************
r}**^"mFy
for n=1:nmax
lm;Dy*|<