登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
程序
>
Susan C. Hagness的1D/2D/3D FDTD(matlab)源码
发帖
回复
1
2
3
4
5
6
...28
下一页
到第
页
确认
88781
阅读
277
回复
[
资料共享
]
Susan C. Hagness的1D/2D/3D FDTD(matlab)源码
离线
gwzhao
方恨少
UID :17098
注册:
2008-08-24
登录:
2019-01-09
发帖:
1374
等级:
荣誉管理员
0楼
发表于: 2008-10-23 14:40:30
— 本帖被 tensor 从 资料库 移动到本区(2009-10-28) —
[post]%***********************************************************************
Nm|!#(L
% 1-D FDTD code with simple radiation boundary conditions
8MSC.0
%***********************************************************************
-wjN"g<
%
F&&$Qn_+
% Program author: Susan C. Hagness
\hB5@e4i2
% Department of Electrical and Computer Engineering
L'u\w
% University of Wisconsin-Madison
]\!?qsT3}
% 1415 Engineering Drive
;VWAf;U;B
% Madison, WI 53706-1691
By% =W5
% 608-265-5739
w Xsmn1w9
%
hagness@engr.wisc.edu
~R(%D-k
%
)E~79!
% Date of this version: February 2000
/iX+ R@
%
V{JAB]?^
% This MATLAB M-file implements the finite-difference time-domain
,T2G~^0
% solution of Maxwell's curl equations over a one-dimensional space
8QM(?A
% lattice comprised of uniform grid cells.
=5\|[NSK-
%
g1jTy7g?
% To illustrate the algorithm, a sinusoidal wave (1GHz) propagating
gvLf|+m
% in a nonpermeable lossy medium (epsr=1.0, sigma=5.0e-3 S/m) is
Rz.? i+
% modeled. The simplified finite difference system for nonpermeable
l8?>>.<P=
% media (discussed in Section 3.6.6 of the text) is implemented.
o LvZ
%
>yULC|'F&~
% The grid resolution (dx = 1.5 cm) is chosen to provide 20
92EWIHEWZ
% samples per wavelength. The Courant factor S=c*dt/dx is set to
>uSy
% the stability limit: S=1. In 1-D, this is the "magic time step."
f"<O0Qw
%
5-M&5f.
% The computational domain is truncated using the simplest radiation
aoXb2 2]{
% boundary condition for wave propagation in free space:
[i]Ub0Dh7
%
Nqu>6^-z0
% Ez(imax,n+1) = Ez(imax-1,n)
K"r*M.P>
%
|o\8
% To execute this M-file, type "fdtd1D" at the MATLAB prompt.
lyGhdgWc
% This M-file displays the FDTD-computed Ez and Hy fields at every
C+TI]{t
% time step, and records those frames in a movie matrix, M, which is
78/Zk}I]
% played at the end of the simulation using the "movie" command.
}I :OsAw
%
~c&bH]cj
%***********************************************************************
ariLG [:X
.FLy;_f+
clear
qTqwPWW*
/oriW;OF
%***********************************************************************
zRyuq1Zyc,
% Fundamental constants
vMS |$L
%***********************************************************************
NgY=&W,
6Udov pl
cc=2.99792458e8; %speed of light in free space
U-|NY
muz=4.0*pi*1.0e-7; %permeability of free space
oZAB _A)[-
epsz=1.0/(cc*cc*muz); %permittivity of free space
>k'c'7/
[Nk3|u`h
freq=1.0e+9; %frequency of source excitation
V>b\[(=s
lambda=cc/freq; %wavelength of source excitation
wYmM"60
omega=2.0*pi*freq;
)gMG#>up@
ndkti5L,
%***********************************************************************
-YCOP0
% Grid parameters
cZ|\.0-
%***********************************************************************
u,UmrR
v61[.oS
ie=200; %number of grid cells in x-direction
0|a(]a}V*j
v&=gF/$
ib=ie+1;
-q*i_r:,
R;j!}D!4
dx=lambda/20.0; %space increment of 1-D lattice
THS.GvT9[
dt=dx/cc; %time step
\ioH\9
omegadt=omega*dt;
(JM5`XwM
F F|FU<
nmax=round(12.0e-9/dt); %total number of time steps
'nwx9]q
0:T|S>FsAm
%***********************************************************************
yrlf+tl
% Material parameters
,]d,-)KX8
%***********************************************************************
8p: j&F
w'UVKpG+
eps=1.0;
=17t- [
sig=5.0e-3;
2* 2wY =
sIxTG y.
%***********************************************************************
6*3.SGUY
% Updating coefficients for space region with nonpermeable media
+1D+]*t_?[
%***********************************************************************
W' s
hy`?E6=9+
scfact=dt/muz/dx;
\Rp-;.I@6
fP. 6HF_p_
ca=(1.0-(dt*sig)/(2.0*epsz*eps))/(1.0+(dt*sig)/(2.0*epsz*eps));
`tn{ei
cb=scfact*(dt/epsz/eps/dx)/(1.0+(dt*sig)/(2.0*epsz*eps));
wbst8*$
m8o(J\]
%***********************************************************************
lGOgN!?i
% Field arrays
[Lzw#XE
%***********************************************************************
3h *!V6%q
smnSDS
ez(1:ib)=0.0;
|b)Y#)C;
hy(1:ie)=0.0;
m_)FC-/pSl
]4pkcV P
%***********************************************************************
lb3]$Da
% Movie initialization
fe9LEM8j
%***********************************************************************
!Y[lQXv
_iir<}
x=linspace(dx,ie*dx,ie);
eY|
+>r/ 0b
subplot(2,1,1),plot(x,ez(1:ie)/scfact,'r'),axis([0 3 -1 1]);
#':fkIYe'
ylabel('EZ');
t$De/Uq
r_-_a(1R:
subplot(2,1,2),plot(x,hy,'b'),axis([0 3 -3.0e-3 3.0e-3]);
W#hj 1
xlabel('x (meters)');ylabel('HY');
yp({>{u7
}3OKC2K~
rect=get(gcf,'Position');
,d {"m)r<
rect(1:2)=[0 0];
Ym =FgM\
wwyPl
M=moviein(nmax/2,gcf,rect);
;oc&Hb
`nZ )>
%***********************************************************************
|563D#?cR
% BEGIN TIME-STEPPING LOOP
6,0_)O}\b
%***********************************************************************
<kx&w(=
HxIIO[h
for n=1:nmax
6BCf:mqP
OR;uqV@
%***********************************************************************
o !vE~
% Update electric fields
HlH64w2^R
%***********************************************************************
(G[ *|6m
s;6CExH
ez(1)=scfact*sin(omegadt*n);
50o~ P!Lz|
}#n;C{z2e
rbc=ez(ie);
dF2nEaN0%
ez(2:ie)=ca*ez(2:ie)+cb*(hy(2:ie)-hy(1:ie-1));
Ro9tZ'N!S
ez(ib)=rbc;
U15H@h
ce7CcHQ?B
%***********************************************************************
!lj| cT9
% Update magnetic fields
-}KC=,]vh
%***********************************************************************
mD^jd+
Z\k&gio5C^
hy(1:ie)=hy(1:ie)+ez(2:ib)-ez(1:ie);
1q,{0s_kp
LILQ\I<<'
%***********************************************************************
xo7Kn+ Kl
% Visualize fields
C,NJb+J
%*********** ..
Kq;8=xP[
T>NDSami
未注册仅能浏览
部分内容
,查看
全部内容及附件
请先
登录
或
注册
共
3
条评分
,
rf币
+11
,
技术分
+1
chenjiabao1989
rf币
+10
十分期待您分享下一贴!
2014-09-29
casey
rf币
+1
有自己的观点
2008-10-23
casey
技术分
+1
当时加错了,补上
2008-10-23
逆流而上
离线
gwzhao
方恨少
UID :17098
注册:
2008-08-24
登录:
2019-01-09
发帖:
1374
等级:
荣誉管理员
1楼
发表于: 2008-10-23 14:40:53
%***********************************************************************
]b%Hy
% 2-D FDTD TE code with PML absorbing boundary conditions
B,@c;K
%***********************************************************************
JNa"8
%
72Iy^Y[MX
% Program author: Susan C. Hagness
fbL\?S,w
% Department of Electrical and Computer Engineering
v{jQek4
% University of Wisconsin-Madison
.Jrqm
% 1415 Engineering Drive
YH%'t= <m
% Madison, WI 53706-1691
0\@dYPa&C
% 608-265-5739
I]Dl /
%
hagness@engr.wisc.edu
~D5\O6mU-
%
,XIz?R>;c
% Date of this version: February 2000
1I<rXY(a`
%
o;=l^-
% This MATLAB M-file implements the finite-difference time-domain
pm\x~3jHs
% solution of Maxwell's curl equations over a two-dimensional
7"w2$*4 '0
% Cartesian space lattice comprised of uniform square grid cells.
'&gF>
%
+tk{"s^r*
% To illustrate the algorithm, a 6-cm-diameter metal cylindrical
*IY*yR6
% scatterer in free space is modeled. The source excitation is
HaYE9/xS
% a Gaussian pulse with a carrier frequency of 5 GHz.
CFqJ/''
%
}f8Uc+
% The grid resolution (dx = 3 mm) was chosen to provide 20 samples
8-_QFgY
% per wavelength at the center frequency of the pulse (which in turn
a(9L,v#?
% provides approximately 10 samples per wavelength at the high end
1}:bqI.<W
% of the excitation spectrum, around 10 GHz).
&b?LP]
%
Z6_N$Z.A
% The computational domain is truncated using the perfectly matched
'eJ+JM<0%
% layer (PML) absorbing boundary conditions. The formulation used
AQ+]|XYo_
% in this code is based on the original split-field Berenger PML. The
)d$glI+
% PML regions are labeled as shown in the following diagram:
<X7FMNr[
%
i 4%xfN
% ----------------------------------------------
&*7?)eI!i
% | | BACK PML | |
q|v(Edt|_[
% ----------------------------------------------
Nv/v$Z{k
% |L | /| R|
?I[8'
% |E | (ib,jb) | I|
T:IW%?M
% |F | | G|
jGEt+\"/QJ
% |T | | H|
YR>B_,Gl
% | | MAIN GRID | T|
E !a|Xp
% |P | | |
z[cyA.
% |M | | P|
;zIP,PMM
% |L | (1,1) | M|
@:U+9[
% | |/ | L|
e|p$d:#!
% ----------------------------------------------
'C:>UlzLy
% | | FRONT PML | |
rSHpS`\ou
% ----------------------------------------------
p"FW&Q=PN
%
}p!HT6 tZ
% To execute this M-file, type "fdtd2D" at the MATLAB prompt.
C#t'Y*
% This M-file displays the FDTD-computed Ex, Ey, and Hz fields at
1e>s{
% every 4th time step, and records those frames in a movie matrix,
tvu!< dxZ
% M, which is played at the end of the simulation using the "movie"
{e[c
% command.
mXUGe:e8
%
LwK+:4$
%***********************************************************************
Q`rF&)Q5
OnF3l Cmu
clear
`S2[5i
-GqT7`:(H4
%***********************************************************************
i2sN3it
% Fundamental constants
C!R1})_^
%***********************************************************************
GW$.lo1|)
Gu'rUo3Do
cc=2.99792458e8; %speed of light in free space
VsN pHQG]
muz=4.0*pi*1.0e-7; %permeability of free space
5o6>T!
epsz=1.0/(cc*cc*muz); %permittivity of free space
cu% C"
/}PF\j9#4
freq=5.0e+9; %center frequency of source excitation
m^H21P"z
lambda=cc/freq; %center wavelength of source excitation
tX@_fYb
omega=2.0*pi*freq;
j8fpj {hp
d8m6B6 CW
%***********************************************************************
) :\xHR4
% Grid parameters
E/09hD Q
%***********************************************************************
"v`
Mnz!nWhk
ie=100; %number of grid cells in x-direction
X83 w@-$}
je=50; %number of grid cells in y-direction
98WZ){+,m
A%^w^f
ib=ie+1;
rc/nFl6#
jb=je+1;
T[sDVkCbxf
LNa $ X5`
is=15; %location of z-directed hard source
/,X[k !
js=je/2; %location of z-directed hard source
;Wl+zw
baP^<w^
dx=3.0e-3; %space increment of square lattice
3nu^l'WQ
dt=dx/(2.0*cc); %time step
h-m\% |D
^ mS o1?<
nmax=300; %total number of time steps
(vB<%l.&
"7v @Rye
iebc=8; %thickness of left and right PML region
Fb4`|
jebc=8; %thickness of front and back PML region
BWM YpZom
rmax=0.00001;
qR8u$2}NY
orderbc=2;
:sP!p`dl
ibbc=iebc+1;
RtCkV xaEx
jbbc=jebc+1;
sp ]zbX?
iefbc=ie+2*iebc;
a9T@$:
jefbc=je+2*jebc;
CXO2N1~(J
ibfbc=iefbc+1;
!O#dV1wAa
jbfbc=jefbc+1;
7yx$Nn`(
lr{?"tl_
%***********************************************************************
#Ap;_XcKw
% Material parameters
V`RNM%Y
%***********************************************************************
]_8qn'7
GN0`rEh
media=2;
TU GNq
7yz4'L
eps=[1.0 1.0];
Qed.4R:o
sig=[0.0 1.0e+7];
Ai/b\:V9S
mur=[1.0 1.0];
T<L^N+<,{N
sim=[0.0 0.0];
`d[1`P1i[
VB?Ohk]<
%***********************************************************************
UH"#2< |b
% Wave excitation
y8 KX<2s1
%***********************************************************************
GHHav12][
}4{fQ`HT
rtau=160.0e-12;
2Y>~k{AN%
tau=rtau/dt;
9&2Vm;F_
delay=3*tau;
]a!xUg!S
MzP7Py 8.
source=zeros(1,nmax);
(:";i&
for n=1:7.0*tau
PNA\ TXT
source(n)=sin(omega*(n-delay)*dt)*exp(-((n-delay)^2/tau^2));
X5khCLHi
end
~j#]tElb
oh KCdT~
%***********************************************************************
ynB _"mg
% Field arrays
m1IKVa7-\}
%***********************************************************************
:Mcu
? B E6
ex=zeros(ie,jb); %fields in main grid
aj"M>zd*}
ey=zeros(ib,je);
:UbM !
hz=zeros(ie,je);
-YjA+XP
t(+)#
exbcf=zeros(iefbc,jebc); %fields in front PML region
4WN3=B
eybcf=zeros(ibfbc,jebc);
J8"[6vI d~
hzxbcf=zeros(iefbc,jebc);
Ht-t1q
hzybcf=zeros(iefbc,jebc);
sU!6 hk
p?2Y }9
exbcb=zeros(iefbc,jbbc); %fields in back PML region
`AkIK*
eybcb=zeros(ibfbc,jebc);
Q3 eM2i8Y
hzxbcb=zeros(iefbc,jebc);
vNeCpf
hzybcb=zeros(iefbc,jebc);
Z{ u a=0
fsEzpUY:{W
exbcl=zeros(iebc,jb); %fields in left PML region
sz9G3artK&
eybcl=zeros(iebc,je);
`zR+ tbm
hzxbcl=zeros(iebc,je);
Fk6x<^Q<w
hzybcl=zeros(iebc,je);
U|5nNiJM
3 AHY|
exbcr=zeros(iebc,jb); %fields in right PML region
^47PLLRP
eybcr=zeros(ibbc,je);
e{A9r@p!
hzxbcr=zeros(iebc,je);
p[@5&_u(z
hzybcr=zeros(iebc,je);
I0'[!kBF|
5|I[>Su
%***********************************************************************
wBInq~K_
% Updating coefficients
rx5B=M
%***********************************************************************
_kdL'x
7-~Q5Kr.
for i=1:media
] )"u+
eaf =dt*sig(i)/(2.0*epsz*eps(i));
s%!`kWVJ.
ca(i)=(1.0-eaf)/(1.0+eaf);
>^OC{~Az
cb(i)=dt/epsz/eps(i)/dx/(1.0+eaf);
R'dSbn
haf =dt*sim(i)/(2.0*muz*mur(i));
Lj"A4i_
da(i)=(1.0-haf)/(1.0+haf);
Y'u7 IX}
db(i)=dt/muz/mur(i)/dx/(1.0+haf);
qA:#iJ8w
end
nZ_v/?O
$%%os6y2v
%***********************************************************************
xEltwuDd?
% Geometry specification (main grid)
p)=~% 7DV
%***********************************************************************
#k$)i[aI-
WH$e2[+Y
% Initialize entire main grid to free space
Y(+^;Y3U
HeK h>
caex(1:ie,1:jb)=ca(1);
?6k}ii!c
cbex(1:ie,1:jb)=cb(1);
=B ];?%
yg2uC(2
caey(1:ib,1:je)=ca(1);
e }*0ghKI
cbey(1:ib,1:je)=cb(1);
W>=o*{(YO
-3&G"hfK
dahz(1:ie,1:je)=da(1);
S#b-awk
dbhz(1:ie,1:je)=db(1);
9M /SH$Qy
`s]4AKBO
% Add metal cylinder
t9_E$w^U
jr /lk
diam=20; % diameter of cylinder: 6 cm
8LI-gp\ 2
rad=diam/2.0; % radius of cylinder: 3 cm
'i8U
icenter=4*ie/5; % i-coordinate of cylinder's center
g'l?~s`SB
jcenter=je/2; % j-coordinate of cylinder's center
)g|xpb
X>I)~z}9#
for i=1:ie
pCu!l#J
for j=1:je
kip`Myw+
dist2=(i+0.5-icenter)^2 + (j-jcenter)^2;
=X!IHd0
if dist2 <= rad^2
D&ve15wL
caex(i,j)=ca(2);
bpkwn<7-
cbex(i,j)=cb(2);
-L3|&