登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
程序
>
Susan C. Hagness的1D/2D/3D FDTD(matlab)源码
发帖
回复
1
2
3
4
5
6
...28
下一页
到第
页
确认
88816
阅读
277
回复
[
资料共享
]
Susan C. Hagness的1D/2D/3D FDTD(matlab)源码
离线
gwzhao
方恨少
UID :17098
注册:
2008-08-24
登录:
2019-01-09
发帖:
1374
等级:
荣誉管理员
0楼
发表于: 2008-10-23 14:40:30
— 本帖被 tensor 从 资料库 移动到本区(2009-10-28) —
[post]%***********************************************************************
TqzL] 'NS+
% 1-D FDTD code with simple radiation boundary conditions
-4 ~(*
%***********************************************************************
99GzhX_
%
y~,mIM$[@
% Program author: Susan C. Hagness
V1[Cc?o
% Department of Electrical and Computer Engineering
IM""s]
% University of Wisconsin-Madison
M4MO)MYJ
% 1415 Engineering Drive
Mf7Z5
% Madison, WI 53706-1691
|?zFm mh
% 608-265-5739
g^ @9SU
%
hagness@engr.wisc.edu
uB;\nj5'D
%
\UBTNY,
% Date of this version: February 2000
a?_!
%
CC?L~/gPN
% This MATLAB M-file implements the finite-difference time-domain
uc>u=kEue
% solution of Maxwell's curl equations over a one-dimensional space
mMp(
% lattice comprised of uniform grid cells.
o>(I_3J[p
%
r]GG9si
% To illustrate the algorithm, a sinusoidal wave (1GHz) propagating
}n!$)W*?
% in a nonpermeable lossy medium (epsr=1.0, sigma=5.0e-3 S/m) is
BSe{HmDq
% modeled. The simplified finite difference system for nonpermeable
~ ZkSYW<
% media (discussed in Section 3.6.6 of the text) is implemented.
!bf8 r
%
5u\#@% \6
% The grid resolution (dx = 1.5 cm) is chosen to provide 20
|=R@nn
% samples per wavelength. The Courant factor S=c*dt/dx is set to
woQ UrO(
% the stability limit: S=1. In 1-D, this is the "magic time step."
r&$r=f<
%
qnFi./
% The computational domain is truncated using the simplest radiation
"])yV
% boundary condition for wave propagation in free space:
Wt$" f
%
{KH!PAh
% Ez(imax,n+1) = Ez(imax-1,n)
N*Is_V\R
%
28/At
% To execute this M-file, type "fdtd1D" at the MATLAB prompt.
w(>mP9Cb
% This M-file displays the FDTD-computed Ez and Hy fields at every
hUL5V1-j
% time step, and records those frames in a movie matrix, M, which is
jv8diQ.
% played at the end of the simulation using the "movie" command.
XsOz {?G
%
Zo=w8Hr
%***********************************************************************
n U0
<=1nr@L
clear
uT")j,tz
,{tz%\,%
%***********************************************************************
rn$LZE %
% Fundamental constants
/' +GYS
%***********************************************************************
],!7S"{97
UEm~5,>$0
cc=2.99792458e8; %speed of light in free space
mpsi{%gA
muz=4.0*pi*1.0e-7; %permeability of free space
u\)2/~<]
epsz=1.0/(cc*cc*muz); %permittivity of free space
OrN~ Y#D
|j?iD
freq=1.0e+9; %frequency of source excitation
VLLE0W _]
lambda=cc/freq; %wavelength of source excitation
} "QV{W
omega=2.0*pi*freq;
Xs,[Z2_iq
"pa}']7#
%***********************************************************************
3Ryae/Nk
% Grid parameters
k15fy"+Ut
%***********************************************************************
S,I|8 YE
A>0wqT
ie=200; %number of grid cells in x-direction
BQ[,(T`+R
V_1'` F
ib=ie+1;
8-f2$
=Gl6~lJ{_
dx=lambda/20.0; %space increment of 1-D lattice
&]d-R
dt=dx/cc; %time step
|sG@Ku7~4
omegadt=omega*dt;
TGSUbBgU
bcVzl]9
nmax=round(12.0e-9/dt); %total number of time steps
]]R!MnU:$
oRp;9
%***********************************************************************
Iu3*`H
% Material parameters
at N%csA0
%***********************************************************************
f( %r)%
aPELAU-
eps=1.0;
h'QEwW
sig=5.0e-3;
zB/)_AW
L%hVts'
%***********************************************************************
} `X.^}oe
% Updating coefficients for space region with nonpermeable media
be@\5
%***********************************************************************
Qp]-:b
[{K
scfact=dt/muz/dx;
8w 2$H
}DCR(p rD
ca=(1.0-(dt*sig)/(2.0*epsz*eps))/(1.0+(dt*sig)/(2.0*epsz*eps));
cx+li4v
cb=scfact*(dt/epsz/eps/dx)/(1.0+(dt*sig)/(2.0*epsz*eps));
PO$ OXw
:)djHPP*
%***********************************************************************
?PpGBm2f*
% Field arrays
D&)w =qIu
%***********************************************************************
,JLY oE+
hny(:Dj
ez(1:ib)=0.0;
E/<5JhI9~
hy(1:ie)=0.0;
F:3*i^ L
E0SP
%***********************************************************************
k+D32]b@
% Movie initialization
o ?9k{
%***********************************************************************
_0razNk
O8!> t7x
x=linspace(dx,ie*dx,ie);
Nt>wzPd)
vk^ /[eha
subplot(2,1,1),plot(x,ez(1:ie)/scfact,'r'),axis([0 3 -1 1]);
~F{u4p7{N
ylabel('EZ');
-pF3q2zb
ptA-rX.
subplot(2,1,2),plot(x,hy,'b'),axis([0 3 -3.0e-3 3.0e-3]);
&efwfnG<
xlabel('x (meters)');ylabel('HY');
z~Ec *
+"~~;J$
rect=get(gcf,'Position');
BAJEn6f?
rect(1:2)=[0 0];
RhL!Zz
$@VQ{S
M=moviein(nmax/2,gcf,rect);
J&vmW}&
``Yw-|&:Ae
%***********************************************************************
`S&$y4|Vs
% BEGIN TIME-STEPPING LOOP
Vk3xWD~
%***********************************************************************
{j0c)SETN
o<pb!]1
for n=1:nmax
+WxZB
w^rINPAS
%***********************************************************************
/d1 B-I
% Update electric fields
vWGjc2_
%***********************************************************************
~9tPT0^+
)/B' ODa
ez(1)=scfact*sin(omegadt*n);
7aV(tMzd
SK>*tKY
rbc=ez(ie);
2O*(F>>dT
ez(2:ie)=ca*ez(2:ie)+cb*(hy(2:ie)-hy(1:ie-1));
D09/(%4j
ez(ib)=rbc;
6wmMg i_m
Gtyy^tz[
%***********************************************************************
e>FK5rz
% Update magnetic fields
)|d]0/<
%***********************************************************************
ME9jN{ le
Dej2-Y
hy(1:ie)=hy(1:ie)+ez(2:ib)-ez(1:ie);
ec$kcD!
GfG!CG^%
%***********************************************************************
]jkaOj
% Visualize fields
_NkVi_UX
%*********** ..
\nX5$[
SccaX P
未注册仅能浏览
部分内容
,查看
全部内容及附件
请先
登录
或
注册
共
3
条评分
,
rf币
+11
,
技术分
+1
chenjiabao1989
rf币
+10
十分期待您分享下一贴!
2014-09-29
casey
rf币
+1
有自己的观点
2008-10-23
casey
技术分
+1
当时加错了,补上
2008-10-23
逆流而上
离线
gwzhao
方恨少
UID :17098
注册:
2008-08-24
登录:
2019-01-09
发帖:
1374
等级:
荣誉管理员
1楼
发表于: 2008-10-23 14:40:53
%***********************************************************************
TfFuHzZZ
% 2-D FDTD TE code with PML absorbing boundary conditions
+=qazE<:0
%***********************************************************************
"\:ZH[j
%
QSNLo_z
% Program author: Susan C. Hagness
1,/L&_=_A
% Department of Electrical and Computer Engineering
(K}Md~
% University of Wisconsin-Madison
I {o\d'/
% 1415 Engineering Drive
#SR"Q`P
% Madison, WI 53706-1691
82q_"y>6
% 608-265-5739
Y>N`(
%
hagness@engr.wisc.edu
MUs~ZF
%
Q~L"Mr8>V
% Date of this version: February 2000
bns([F
%
a BHV
% This MATLAB M-file implements the finite-difference time-domain
SjZ?keKZ
% solution of Maxwell's curl equations over a two-dimensional
jl:dKL@
% Cartesian space lattice comprised of uniform square grid cells.
!:7aXT*D$
%
y9>?
% To illustrate the algorithm, a 6-cm-diameter metal cylindrical
yVP 1=pz_[
% scatterer in free space is modeled. The source excitation is
!8#!P
% a Gaussian pulse with a carrier frequency of 5 GHz.
a33SY6.
%
6$l6>A
% The grid resolution (dx = 3 mm) was chosen to provide 20 samples
ju@5D h
% per wavelength at the center frequency of the pulse (which in turn
(_Ld^^|
% provides approximately 10 samples per wavelength at the high end
#3L=\j[ y
% of the excitation spectrum, around 10 GHz).
Ijs"KAW ?
%
JuD$CHg;#
% The computational domain is truncated using the perfectly matched
>h+G$&8[y
% layer (PML) absorbing boundary conditions. The formulation used
` s}v6
% in this code is based on the original split-field Berenger PML. The
bN',-[E
% PML regions are labeled as shown in the following diagram:
pR VL}^Rk
%
s)e' }y
% ----------------------------------------------
yzml4/X
% | | BACK PML | |
6kc/
% ----------------------------------------------
DW,fh8 w
% |L | /| R|
S&rfMRP
% |E | (ib,jb) | I|
B 3Yj
% |F | | G|
Lh M{d
% |T | | H|
j1LL[+G-"_
% | | MAIN GRID | T|
,iUYsY
% |P | | |
R\oas"
% |M | | P|
gkN|3^
% |L | (1,1) | M|
DJF-J#
% | |/ | L|
QCI-YJ&o
% ----------------------------------------------
wW1E 'Vy{
% | | FRONT PML | |
#CM^f^*
% ----------------------------------------------
:<`hsKy&
%
?b&~(,A{
% To execute this M-file, type "fdtd2D" at the MATLAB prompt.
XP$ 1CWI
% This M-file displays the FDTD-computed Ex, Ey, and Hz fields at
X[XSf=
% every 4th time step, and records those frames in a movie matrix,
A^a9,T
% M, which is played at the end of the simulation using the "movie"
#$qhxYyd
% command.
9=-!~_'1-
%
I2b\[d
%***********************************************************************
jq4{UW'
_DAAD,'<a
clear
),K!|7#h
kp+\3z_
%***********************************************************************
,B,2t u2
% Fundamental constants
N8Mq0Ck{$
%***********************************************************************
%mda=%Yn
]('isq,P
cc=2.99792458e8; %speed of light in free space
b;[u=9ez
muz=4.0*pi*1.0e-7; %permeability of free space
CDz-IQi
epsz=1.0/(cc*cc*muz); %permittivity of free space
pFu3FUO*;
mxpncM=q
freq=5.0e+9; %center frequency of source excitation
fy|Ae
lambda=cc/freq; %center wavelength of source excitation
[}/\W`C
omega=2.0*pi*freq;
U =()T}b>
^PCshb##
%***********************************************************************
,a I0Aw
% Grid parameters
a*8^M\>m4
%***********************************************************************
@'K+
z]NN ^pIa
ie=100; %number of grid cells in x-direction
Jk.Ec)w
je=50; %number of grid cells in y-direction
/}]Irj4m
"~f=7
ib=ie+1;
8^H <dR
jb=je+1;
SGU~LW&
0 w"&9+kV
is=15; %location of z-directed hard source
GUe&WW:Sqk
js=je/2; %location of z-directed hard source
_~M*XJ] `
A3 UC=z<y
dx=3.0e-3; %space increment of square lattice
C#5z!z/:%
dt=dx/(2.0*cc); %time step
4g.y$
| Wrf|%p
nmax=300; %total number of time steps
j}=$2|}8{
>Ic)RPO9
iebc=8; %thickness of left and right PML region
07T"alXf:A
jebc=8; %thickness of front and back PML region
#_tixg
rmax=0.00001;
ak?XE4-N
orderbc=2;
Jmln*,Ol7
ibbc=iebc+1;
|WiK*
jbbc=jebc+1;
nKFua l3
iefbc=ie+2*iebc;
m|O7@N
jefbc=je+2*jebc;
3 *o l
ibfbc=iefbc+1;
x)hp3&L
jbfbc=jefbc+1;
lW,rzJ1
_fH.#C
%***********************************************************************
<B;l).[6
% Material parameters
pP&TFy#G+'
%***********************************************************************
3N) bJ
5]WpH0kzO
media=2;
( _ZOUMe
o)P'H"Ki
eps=[1.0 1.0];
+fd^$Qd%K
sig=[0.0 1.0e+7];
xQ `>\f
mur=[1.0 1.0];
T(<C8
sim=[0.0 0.0];
1)aB']K%
iBy:HH
%***********************************************************************
bP`.teO\
% Wave excitation
xj/ +Z!,9
%***********************************************************************
CL*i,9:NR
npH2&6Yhi^
rtau=160.0e-12;
-Fodqq@,
tau=rtau/dt;
3|Q:tt'|#
delay=3*tau;
!\a'GO[
|wKC9 O@%
source=zeros(1,nmax);
R4<