登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
时域有限差分法 FDTD
>
我们一起来讨论1D FDTD (附代码)
发帖
回复
2264
阅读
1
回复
[
讨论
]
我们一起来讨论1D FDTD (附代码)
离线
opticalboy
UID :13713
注册:
2008-06-12
登录:
2008-07-11
发帖:
12
等级:
仿真新人
0楼
发表于: 2008-06-17 11:50:16
%***********************************************************************
&)bar.vw/
% 1-D FDTD code with simple radiation boundary conditions
\!S C;
%***********************************************************************
p^L6uM
%
ahV_4;yF
% Program author: Susan C. Hagness
l,v:[N
% Department of Electrical and Computer Engineering
hlUF9}
% University of Wisconsin-Madison
siD Sm
% 1415 Engineering Drive
#Jm_~k
% Madison, WI 53706-1691
}*R"yp
% 608-265-5739
|xf%1(Rl@
%
hagness@engr.wisc.edu
?<nz2 piP,
%
QGshc
% Date of this version: February 2000
,/d-o;W
%
gH_r'j
% This MATLAB M-file implements the finite-difference time-domain
;<MaCtDt
% solution of Maxwell's curl equations over a one-dimensional space
Aga7X@fV(
% lattice comprised of uniform grid cells.
rBny*! n
%
Zy!\=-dSm
% To illustrate the algorithm, a sinusoidal wave (1GHz) propagating
<4O=[Q 5S
% in a nonpermeable lossy medium (epsr=1.0, sigma=5.0e-3 S/m) is
|Pj _L`G
% modeled. The simplified finite difference system for nonpermeable
0c3G_I=
% media (discussed in Section 3.6.6 of the text) is implemented.
T.(SBP
%
tXp)o>"
% The grid resolution (dx = 1.5 cm) is chosen to provide 20
X,OxvmDm
% samples per wavelength. The Courant factor S=c*dt/dx is set to
H/L3w|2+
% the stability limit: S=1. In 1-D, this is the "magic time step."
)E4COw+
%
o&CvjE
% The computational domain is truncated using the simplest radiation
-_4! id
% boundary condition for wave propagation in free space:
N7;E 2 X
%
3aDma/
% Ez(imax,n+1) = Ez(imax-1,n)
qy-BZ%3
%
hqBwA1](a
% To execute this M-file, type "fdtd1D" at the MATLAB prompt.
3[e@mcO
% This M-file displays the FDTD-computed Ez and Hy fields at every
u{3KV6MS
% time step, and records those frames in a movie matrix, M, which is
;ib~c,
% played at the end of the simulation using the "movie" command.
:ZzG5[o3
%
}Ns_RS$
%***********************************************************************
ntF(K/~Y
$K,aLcu
clear
EAq >v t83
1gt[_P2u
%***********************************************************************
|QzPY8B9O
% Fundamental constants
k,@1rOf
%***********************************************************************
D^TKv;%d
tjTF?>^6|
cc=2.99792458e8; %speed of light in free space
ZO;]Zt]
muz=4.0*pi*1.0e-7; %permeability of free space
qh&K{r*T
epsz=1.0/(cc*cc*muz); %permittivity of free space
k[zf`x^
pD>3c9J'^F
freq=1.0e+9; %frequency of source excitation
19=Dd#Nf
lambda=cc/freq; %wavelength of source excitation
M 0"feq
omega=2.0*pi*freq;
FCP5EN
t6"4+:c!>
%***********************************************************************
K^>qn,]H'
% Grid parameters
=k8A7P
%***********************************************************************
XG[%oL
6XG+YIG6w
ie=200; %number of grid cells in x-direction
ZtvU~'Q
-~-2 g
ib=ie+1;
G6J3F
e1IuobT
dx=lambda/20.0; %space increment of 1-D lattice
+Rh'VZJs
dt=dx/cc; %time step
a%]p*X!
omegadt=omega*dt;
N&GcWcq
!l\pwfXP&%
nmax=round(12.0e-9/dt); %total number of time steps
~j4=PT
N&ddO-r[s
%***********************************************************************
:5Vu.\,1
% Material parameters
0SDCo\
%***********************************************************************
jG^~{7#
au7BqV!uL
eps=1.0;
?Z!KV=
sig=5.0e-3;
-Kc-eU-&q
^{Vm,nAQqs
%***********************************************************************
'+eP%Y[W%
% Updating coefficients for space region with nonpermeable media
B#gmT2L
%***********************************************************************
::5-UxGL<2
z^b\hR
scfact=dt/muz/dx;
[cH/Y2[
V*TG%V -
ca=(1.0-(dt*sig)/(2.0*epsz*eps))/(1.0+(dt*sig)/(2.0*epsz*eps));
y%GV9
cb=scfact*(dt/epsz/eps/dx)/(1.0+(dt*sig)/(2.0*epsz*eps));
O^<6`ku
asJYGqdF
%***********************************************************************
y~d W=zO
% Field arrays
/;lk.-yU
%***********************************************************************
"ulaF+
#2MwmIeA
ez(1:ib)=0.0;
m&%N4Q~X>
hy(1:ie)=0.0;
S2NsqHJr
@V-ZV
%***********************************************************************
IR>Kka(B
% Movie initialization
6%'{Cq1DE
%***********************************************************************
~q4y'dBy*
P*LcWrK
x=linspace(dx,ie*dx,ie);
K)14v;@
>:xnjEsi$/
subplot(2,1,1),plot(x,ez(1:ie)/scfact,'r'),axis([0 3 -1 1]);
'Oc8[8
ylabel('EZ');
Mfz5:'
]6aM %r=c
subplot(2,1,2),plot(x,hy,'b'),axis([0 3 -3.0e-3 3.0e-3]);
0hv[Ff
xlabel('x (meters)');ylabel('HY');
kQb0pfYs
^*r${Nj
rect=get(gcf,'Position');
U-k;kmaj
rect(1:2)=[0 0];
%z.G3\s0
af_zZf!0
M=moviein(nmax/2,gcf,rect);
hh?'tb{
^g0 Ig2'
%***********************************************************************
"2h#inS
% BEGIN TIME-STEPPING LOOP
c]LH.
%***********************************************************************
6RF01z|~_
p<+]+,|\~:
for n=1:nmax
5 4OYAkPCk
*[U:'o`67
%***********************************************************************
J\%:jg( m
% Update electric fields
yjpjJ
%***********************************************************************
>YW>=5_
'l}3Iua6qk
ez(1)=scfact*sin(omegadt*n);
PU>;4l
A1@-;/H3
rbc=ez(ie);
SB;Wa%
ez(2:ie)=ca*ez(2:ie)+cb*(hy(2:ie)-hy(1:ie-1));
mA."*)8VNg
ez(ib)=rbc;
h}oQr0"c
3}+/\:q*
%***********************************************************************
\x+DEy'4;5
% Update magnetic fields
a} /Vu"
%***********************************************************************
q[#\qT&QU
w Vof_'F1
hy(1:ie)=hy(1:ie)+ez(2:ib)-ez(1:ie);
/}VQzF
Uyh
%***********************************************************************
m<yA] ';s
% Visualize fields
l?~ci ;lG
%***********************************************************************
2iGRw4`_a
nqH^%/7)A@
CxRp$;rk
未注册仅能浏览
部分内容
,查看
全部内容及附件
请先
登录
或
注册
共
1
条评分
cem-uestc
rf币
+5
你发了优秀贴子+2~3
2008-06-17
离线
cem-uestc
UID :9061
注册:
2008-03-07
登录:
2019-01-05
发帖:
2575
等级:
荣誉管理员
1楼
发表于: 2008-06-17 21:41:49
Matlab代码值得学习,制作仿真动画的好参考matlab代码,其价值超过FDTD代码,奖励
共
条评分
欢迎光临
http://www.mwtee.com/home.php?mod=space&uid=13535
发帖
回复