登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
时域有限差分法 FDTD
>
我们一起来讨论1D FDTD (附代码)
发帖
回复
2265
阅读
1
回复
[
讨论
]
我们一起来讨论1D FDTD (附代码)
离线
opticalboy
UID :13713
注册:
2008-06-12
登录:
2008-07-11
发帖:
12
等级:
仿真新人
0楼
发表于: 2008-06-17 11:50:16
%***********************************************************************
A v2 _A
% 1-D FDTD code with simple radiation boundary conditions
tW=0AtZl]
%***********************************************************************
N=I5MQG
%
*)]SsM1
% Program author: Susan C. Hagness
X_!mZ\H7
% Department of Electrical and Computer Engineering
Zt!l3(*tt
% University of Wisconsin-Madison
hChM hc
% 1415 Engineering Drive
7DYD+N+T
% Madison, WI 53706-1691
Z<,gSut'Y
% 608-265-5739
g"Ii'JZ?
%
hagness@engr.wisc.edu
iBUf1v
%
Fah}#,
% Date of this version: February 2000
j|aT`UH03
%
P`bR;2o
% This MATLAB M-file implements the finite-difference time-domain
oub4/0tN,~
% solution of Maxwell's curl equations over a one-dimensional space
{iQ<`,)Y
% lattice comprised of uniform grid cells.
|e< U %v
%
r kD4}jV
% To illustrate the algorithm, a sinusoidal wave (1GHz) propagating
;?:,L
% in a nonpermeable lossy medium (epsr=1.0, sigma=5.0e-3 S/m) is
8%xtb6#7M
% modeled. The simplified finite difference system for nonpermeable
P;_dilG
% media (discussed in Section 3.6.6 of the text) is implemented.
wG{obsL.!
%
U'lmQrF!
% The grid resolution (dx = 1.5 cm) is chosen to provide 20
p`d:g BZ
% samples per wavelength. The Courant factor S=c*dt/dx is set to
]lO$oO
% the stability limit: S=1. In 1-D, this is the "magic time step."
^d=Z/d[
%
JR<R8+@g_
% The computational domain is truncated using the simplest radiation
q6G([h7
% boundary condition for wave propagation in free space:
H>7!+&M
%
r*p%e\ 3
% Ez(imax,n+1) = Ez(imax-1,n)
8dZH&G@;
%
'xi..
% To execute this M-file, type "fdtd1D" at the MATLAB prompt.
oNCDG|8z
% This M-file displays the FDTD-computed Ez and Hy fields at every
Mvcl9
% time step, and records those frames in a movie matrix, M, which is
z:fhq:R(
% played at the end of the simulation using the "movie" command.
(u'/tNGS
%
c//W#V2Q
%***********************************************************************
dJ&s/Z/>E
lmc-ofEv
clear
fglZjT
73<iK]*c
%***********************************************************************
un9o~3SF<
% Fundamental constants
?=4t~\g?
%***********************************************************************
;q^YDZ'
SQ1&n;M}f
cc=2.99792458e8; %speed of light in free space
x<3vA|o
muz=4.0*pi*1.0e-7; %permeability of free space
r2Z`4tN:
epsz=1.0/(cc*cc*muz); %permittivity of free space
x4( fW\
L+kS8D<
freq=1.0e+9; %frequency of source excitation
r=[}7N
lambda=cc/freq; %wavelength of source excitation
:<(<tz7dj
omega=2.0*pi*freq;
Y zvtxX*
=H?Nb:s
%***********************************************************************
# xoFIH
% Grid parameters
-"nYCF
%***********************************************************************
rFK *
w6yeX<!ll
ie=200; %number of grid cells in x-direction
'#Fh J%x
L%8"d6
ib=ie+1;
=lmh^**4
6?iP z?5
dx=lambda/20.0; %space increment of 1-D lattice
AdYQhF##
dt=dx/cc; %time step
<A&R%5Vs
omegadt=omega*dt;
!*ucVv;
)I$Mh@F
nmax=round(12.0e-9/dt); %total number of time steps
bG&qgbN>
>WEg8'#O
%***********************************************************************
'Hia6<m3
% Material parameters
PJ.jgN(r
%***********************************************************************
p}!pT/KmpH
d!X?R}
eps=1.0;
U{}7:&As
sig=5.0e-3;
KWH
ropiyT9;
%***********************************************************************
|V7a26h
% Updating coefficients for space region with nonpermeable media
mT9\%5d3
%***********************************************************************
1M{#"t{6
sI'HS+~pU
scfact=dt/muz/dx;
:)yM9^<D
$G}Q}f
ca=(1.0-(dt*sig)/(2.0*epsz*eps))/(1.0+(dt*sig)/(2.0*epsz*eps));
0q;] ;m
cb=scfact*(dt/epsz/eps/dx)/(1.0+(dt*sig)/(2.0*epsz*eps));
Y'~&%|9+T
{2Ibd i
%***********************************************************************
lpM{@JC
% Field arrays
+]zP $5_e
%***********************************************************************
~zX5}U<R
NNdS:(
ez(1:ib)=0.0;
gc:>HX);)
hy(1:ie)=0.0;
'ng/A4
M*HG4(n0
%***********************************************************************
mNYz7N
% Movie initialization
NEH$&%OV?
%***********************************************************************
4>HGwk@+8
igL^k`&5^"
x=linspace(dx,ie*dx,ie);
Ol@ZH_
R{B~No w3
subplot(2,1,1),plot(x,ez(1:ie)/scfact,'r'),axis([0 3 -1 1]);
tSYnc7
ylabel('EZ');
`qgJE_GC
u^uG_^^,/
subplot(2,1,2),plot(x,hy,'b'),axis([0 3 -3.0e-3 3.0e-3]);
<am7t[G."
xlabel('x (meters)');ylabel('HY');
]rm=F]W/n
ZSSgc0u^?
rect=get(gcf,'Position');
`ouzeu9}
rect(1:2)=[0 0];
TK>}$.c%+
:F\f}G3
M=moviein(nmax/2,gcf,rect);
`7A@\Ha3
<coCu0
%***********************************************************************
F"C Yrt
% BEGIN TIME-STEPPING LOOP
*X-$* ~J0
%***********************************************************************
Jp#cFUa t
y_&XF>k91
for n=1:nmax
cOgtBEhn
T}TP.!0E
%***********************************************************************
!;a<E:
% Update electric fields
<i6M bCB
%***********************************************************************
5S?yj
[)pT{QA
ez(1)=scfact*sin(omegadt*n);
jYF3u0 )
Uf<vw3
rbc=ez(ie);
u2Obb`p S
ez(2:ie)=ca*ez(2:ie)+cb*(hy(2:ie)-hy(1:ie-1));
[ub\DLl
ez(ib)=rbc;
J#]yKgT
4#9-Z6kOk
%***********************************************************************
"lZ<bG
% Update magnetic fields
F)w83[5_d
%***********************************************************************
M2S|$6t:
\#r_H9&s6
hy(1:ie)=hy(1:ie)+ez(2:ib)-ez(1:ie);
g1|c?#fwo
g <o ;\\
%***********************************************************************
:JIPF=]fc
% Visualize fields
wp*1HnWj8Y
%***********************************************************************
CQ[-Cp7
7A6sSfPUy
M[{:o/]<
未注册仅能浏览
部分内容
,查看
全部内容及附件
请先
登录
或
注册
共
1
条评分
cem-uestc
rf币
+5
你发了优秀贴子+2~3
2008-06-17
离线
cem-uestc
UID :9061
注册:
2008-03-07
登录:
2019-01-05
发帖:
2575
等级:
荣誉管理员
1楼
发表于: 2008-06-17 21:41:49
Matlab代码值得学习,制作仿真动画的好参考matlab代码,其价值超过FDTD代码,奖励
共
条评分
欢迎光临
http://www.mwtee.com/home.php?mod=space&uid=13535
发帖
回复