登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
程序
>
急寻 有限差分法计算波导内电场分布的matlab ..
发帖
回复
4037
阅读
3
回复
[
求助
]
急寻 有限差分法计算波导内电场分布的matlab程序
离线
天不空
UID :4999
注册:
2007-09-18
登录:
2011-07-20
发帖:
78
等级:
仿真一级
0楼
发表于: 2008-05-29 10:47:24
哪位高手可提供一些有关利用有限差分法计算波导内电场分布的matlab程序的例子???
9P7^*f:E
在书上只是看到计算的原理,具体到程序代码的部分就没有了,不知道该怎么编写
7kT&}`g.
..
&;x*uG
lL<LJ :L
未注册仅能浏览
部分内容
,查看
全部内容及附件
请先
登录
或
注册
共
条评分
离线
gwzhao
方恨少
UID :17098
注册:
2008-08-24
登录:
2019-01-09
发帖:
1374
等级:
荣誉管理员
1楼
发表于: 2008-09-01 12:24:43
function Fdtd_J()
8\BYm|%aa
clear;
N@3&e;y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
g=Bge)
%%%%常数
Rwe!xY^d8
mu0=4e-7*pi;
`6FH@" |I
c0=3e8;
{Z_?7J&z
Z0=mu0*c0;
.gs:.X)TG9
eps0=1/(Z0*c0);
(RafidiH
N D1'XCN
:)j& t>aP
%%%%%%%%%%%%%%%%%%%'
HbMD5(
nb=10;
DP08$Iq
nx=30;
`^'0__<M
ny=30;
@ev8"JZ1
nz=30;
V1 {'d[E*
nt=120;
dz,4);Mg
smax=4e8;
UYkuz
tpulse=30;
!~!\=etm
q?=_{oH9
dx=1;
a'|/=$
dy=1;
r[4dGt
dz=1;
Y=(%t:#_
dt=1/(c0*sqrt(1/dx^2+1/dy^2+1/dz^2));
-5u. Ix3
Hq0O!Zv
exs=zeros(nx+2*nb,ny+2*nb,nz+2*nb,2);
TLT6z[
eys=zeros(nx+2*nb,ny+2*nb,nz+2*nb,2);
!+Zso&
ezs=zeros(nx+2*nb,ny+2*nb,nz+2*nb,2);
5O]eD84B
hxs=zeros(nx+2*nb,ny+2*nb,nz+2*nb,2);
I7?s+vyds
hys=zeros(nx+2*nb,ny+2*nb,nz+2*nb,2);
T&u25"QOf
hzs=zeros(nx+2*nb,ny+2*nb,nz+2*nb,2);
GK[[e~#u
F,h}HlU
sxe=zeros(1,nx+2*nb);
a8cX{6
sye=zeros(1,ny+2*nb);
6'\VPjt
sze=zeros(1,nz+2*nb);
,.TwM;w=
sxh=zeros(1,nx+2*nb);
4\iy{1{E,C
syh=zeros(1,ny+2*nb);
N7#,x9+E
szh=zeros(1,nz+2*nb);
9YVr9BM'K
=0_((eXwf
for i=1:nx+2*nb
uE^5o\To
sxe=smax*rho(i+1,nx,nb)^2;
Q'c[yu
sxh=smax*rho(i+0.5,nx,nb)^2;
IIUTo
end
l^;=0UR_
>+F +"NAN
for i=1:ny+2*nb
OJ,Z
sye=smax*rho(i+1,ny,nb)^2;
=fcRH:B:
syh=smax*rho(i+0.5,ny,nb)^2;
^#&PTq>
end
~'t+X
n+w$'l
for i=1:nz+2*nb
Pw/$ }Q9X
sze=smax*rho(i+1,nz,nb)^2;
mL3 Q
szh=smax*rho(i+0.5,nz,nb)^2;
n*y@3.
end
cW?~]E'<
t[%ELHV
for n=1:nt
(tzfyZ M
if n<=tpulse
of0hJR
F_in=-fun(n,tpulse);
41^ $
ezs(nx/2,ny/2,nz/2,:)=ezs(nx/2,ny/2,nz/2,:)-F_in/2;
&D#B"XI
end
g7O, <
FcmL4^s.`
uV\~2#o$_
Ex=exs;
LhQidvCNJ
Ey=eys;
!= u S
Ez=ezs;
LT6VZ,S
Hx=hxs;
#r;uM+
Hy=hys;
*@[N~:z/
Hz=hzs;
L]QBh\
H;Cv]-
[v]=add_diff_y(syh,-mu0,Hx(2:nx+2*nb,:,:,1),Ez(2:nx+2*nb,:,:,:));
7U`8W\-
Hx(2:nx+2*nb,:,:,1)=v;
PLs(+>H
[v]=add_diff_z(szh,mu0,Hx(2:nx+2*nb,:,:,2),Ey(2:nx+2*nb,:,:,:));
_0!<iN L
Hx(2:nx+2*nb,:,:,2)=v;
[J+]1hCZ|
&OP =O*B
[v]=add_diff_z(szh,-mu0,Hy(:,2:ny+2*nb,:,1),Ex(:,2:ny+2*nb,:,:));
'jjJ[16"d
Hy(:,2:ny+2*nb,:,1)=v;
Vo(V<2lw}
[v]=add_diff_x(sxh,mu0,Hy(:,2:ny+2*nb,:,2),Ez(:,2:ny+2*nb,:,:));
`!7QegJa"
Hy(:,2:ny+2*nb,:,2)=v;
S\W&{+3
<: I]0|[
[v]=add_diff_x(sxh,-mu0,Hz(:,:,2:nz+2*nb,1),Ey(:,:,2:nz+2*nb,:));
B+2Jea,N
Hz(:,:,2:nz+2*nb,1)=v;
5gH'CzU?
[v]=add_diff_y(syh,mu0,Hz(:,:,2:nz+2*nb,2),Ex(:,:,2:nz+2*nb,:));
(qg~l@rf
Hz(:,:,2:nz+2*nb,2)=v;
nCPIpw,]M
/*hS0xN*
[v]=add_diff_y(sye,eps0,Ex(:,2:ny+2*nb,2:nz+2*nb,1),Hz(:,:,2:nz+2*nb,:));
zJT,Hv .
Ex(:,2:ny+2*nb,2:nz+2*nb,1)=v;
}W$}blbp
[v]=add_diff_z(sze,-eps0,Ex(:,2:ny+2*nb,2:nz+2*nb,2),Hy(:,2:ny+2*nb,:,:));
'Z`fZ5q
Ex(:,2:ny+2*nb,2:nz+2*nb,2)=v;
Su/}OS\R
9Lqo^+0)\
[v]=add_diff_z(sze,eps0,Ey(2:nx+2*nb,:,2:nz+2*nb,1),Hx(2:nx+2*nb,:,:,:));
xqLIs:*
Ey(2:nx+2*nb,:,2:nz+2*nb,1)=v;
;ksxz
[v]=add_diff_x(sxe,-eps0,Ey(2:nx+2*nb,:,2:nz+2*nb,2),Hz(:,:,2:nz+2*nb,:));
0uO<7IW9
Ey(2:nx+2*nb,:,2:nz+2*nb,2)=v;
"MU)8$d
sZYTpZgW4L
[v]=add_diff_x(sxe,eps0,Ez(2:nx+2*nb,2:ny+2*nb,:,1),Hy(:,2:ny+2*nb,:,:));
:IX_}|
Ez(2:nx+2*nb,2:ny+2*nb,:,1)=v;
H <ugc
[v]=add_diff_y(sye,-eps0,Ez(2:nx+2*nb,2:ny+2*nb,:,2),Hx(2:nx+2*nb,:,:,:));
VDC"tSQ
Ez(2:nx+2*nb,2:ny+2*nb,:,2)=v;
5HMDug;
) kK" 1\m
]_&pIBp
Cswa5l`af
end
IXt cHAgX
ff<adl-
@d_;p<\l
p="K4E8~H
A3mS Sc6
%%%%%%%%%%%%%%%%%%%%
iBPx97a
function rho=rho(x,nmax,nb)
k ks ?S',
rho=max(max(-x,x-nmax),0)/max(nb,1);
Y~uqKb;A
end
jG~UyzWH;
a#i%7mfn
%%%%%%%%%%%%%%%%%%%%%%%%%%
ts~$'^K[-
function g=g(t)
"RM vWuNt
g=sin(2*t)*sin(t)^5;
W.VyH|?
end
j aq/]I7
%%%%%%%%%%%%%%%%%%%%%%
8WRxM%gsH
function fun=fun(t,tpulse)
Ehf3L |9
fun=g(min(t/tpulse,1)*pi);
N6*v!M+
end
+Y|HO[
%%%%%%%%%%%%%%%%%%%%%%
o;M-M(EZQ6
function [v]=add_diff_x(s,pfac,v,w)
Rhil]|a/
nsize2=size(v(1,:,1));
Mv^G%zg2
nsize2=nsize2(2);
rkC6-9V
alpha=zeros(1,nsize2);
+yYSp8>
beta=zeros(1,nsize2);
ZeYkZzN
[alpha,beta]=coeff(pfac,dy,s,alpha,beta,nsize1);
x:WxEw>R
nsize1=size(v(:,1,1));
>5}jM5$
nsize1=nsize1(2);
I6,sN9` K
nsize3=size(v(1,1,:));
Zfn390 _
nsize3=nsize3(2);
.3*VkAs
for k=1:nsize3-1
n*U+jc
for j=1:nsize2-1
6 &)fZt
for i=1:nzise1-1
."\&;:ZNv
v(i,j,k)=alpha(i)*v(i,j,k)+beta(i)*(w(i+1,j,k,1)+w(i+1,j,k,2)-w(i,j,k,1)-w(i,j,k,2));
M/^kita
end
%Lwd1'C%
end
l#G }j^Q
end
jt8% L[
l\Or.I7n
Al(u|LbQ
end
%xWscA%^u
%%%%%%%%%%%%%%%%%%%%%%
%Jc>joU
function [v]=add_diff_y(s,pfac,v,w)
=\l7k<
nsize2=size(v(1,:,1));
IRW%*W#
nsize2=nsize2(2);
,-[dr|.
alpha=zeros(1,nsize2);
sCF7K=a
beta=zeros(1,nsize2);
1GL@t?S
[alpha,beta]=coeff(pfac,dy,s,alpha,beta,nsize2);
>o"3:/3
nsize1=size(v(:,1,1));
zOnQ656
nsize1=nsize1(2);
WxFrqUz
nsize3=size(v(1,1,:));
Z2dy|e(c
nsize3=nsize3(2);
d^<a)>5h
for k=1:nsize3-1
3e.v'ccK&
for j=1:nsize2-1
]Ak@!&hyak
for i=1:nzise1-1
q$=EUB"C
v(i,j,k)=alpha(j)*v(i,j,k)+beta(j)*(w(i,j+1,k,1)+w(i,j+1,k,2)-w(i,j,k,1)-w(i,j,k,2));
X@ Gm:6
end
k$7@@?<
end
g)Byd\DS
end
,3{z_Rax-
Z 7M%}V%
De*Z UN|<
end
?>p<!:E!r
%%%%%%%%%%%%%%%%%%%%%%
L('G1J}
function [v]=add_diff_z(s,pfac,v,w)
= ?hx+-'
nsize1=size(v(:,1,1));
"jUr[X2J
nsize1=nsize1(2);
@Pc]qu
nsize3=size(v(1,1,:));
i-EFq@xl
nsize3=nsize3(2);
~4~-^ t
nsize2=size(v(1,:,1));
&)p/cOiV
nsize2=nsize2(2);
zaVDe9B,7
alpha=zeros(1,nsize3);
|ei?s1)
beta=zeros(1,nsize3);
U&mJ_f#M
[alpha,beta]=coeff(pfac,dz,s,alpha,beta,nsize3);
%q@eCN
2\z"6
for k=1:nsize3-1
%#Vn?zr|~
for j=1:nsize2-1
Zbp ByRyN
for i=1:nzise1-1
<(Wa8PY2(
v(i,j,k)=alpha(k)*v(i,j,k)+beta(k)*(w(i,j,k+1,1)+w(i,j,k+1,2)-w(i,j,k,1)-w(i,j,k,2));
MKdBqnM(F
end
PIuk]&L^
end
$3!j1
end
Upr:sB
nuB@Fkr
Hiz e m!
end
6SMGXy*]^
%%%%%%%%%%%%%%%%%%%%%%%%%%%
qYW{$K
function [alpha,beta]=coeff(pfac,d,s,alpha,beta,n)
xi=qap=S^9
for i=1:n
]8q5k5~
t=exp(-s(i)*dt);
_|ucC$*
alpha(i)=t;
PomX@N}1
if t>1-1e-7
S< <xlW
beta(i)=dt/(pfac*d);
TIV1?S
else
W.ud<OKP90
beta(i)=(1-t)/(pfac*s(i)*d);
)T:{(v7 d`
end
Es kh=xA {
end
WG;1[o&
end
共
条评分
逆流而上
离线
gwzhao
方恨少
UID :17098
注册:
2008-08-24
登录:
2019-01-09
发帖:
1374
等级:
荣誉管理员
2楼
发表于: 2008-09-01 12:28:47
这个只是极其简单的例子,实际上数值模拟最难的是边界的处理。对三维而言,内存使用,速度等等。
Cfr2~w
b?U2g?lN:
其实我建议你不要向别人要源码,因为这样对你自己帮助很小很小。
MV.&GUez{
而且简单的波导,数值计算就可以搞定了,没有必要用数值模拟。况且微波书上对波导讲了比较详细了,对简单情况可以直接得到的。
#fVk;]u`[3
|S6L[Uo
数值模拟主要针对边界比较复杂,无法解析求解的情况下,使用才有意义。
Zdfruzl&`
byJR6f
共
条评分
逆流而上
离线
qiupan23
UID :60223
注册:
2010-05-23
登录:
2010-06-28
发帖:
17
等级:
仿真新人
3楼
发表于: 2010-06-28 16:13:14
这是时域有限差分法FDTD,不是FDM,FDTD是应用于时域的,FDM是应用于频域的
共
条评分
发帖
回复