登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
时域有限差分法 FDTD
>
关于UPML吸收边界的一些问题,求大家进来看 ..
发帖
回复
1110
阅读
0
回复
[
求助
]
关于UPML吸收边界的一些问题,求大家进来看看
离线
shao63468308
UID :105187
注册:
2013-03-07
登录:
2013-06-06
发帖:
24
等级:
仿真新人
0楼
发表于: 2013-05-22 12:28:33
{ 5 r]G
%***********************************************************************
/[ m7~B]QE
% 3-D FDTD code with UPML absorbing boundary conditions
;*rGZ?%*
%***********************************************************************
JX'}+.\
%
2l,>x
% Program author: Keely J. Willis, Graduate Student
O\7x+^.
% UW Computational Electromagnetics Laboratory
QV."ZhL5 =
% Director: Susan C. Hagness
;jxX /c
% Department of Electrical and Computer Engineering
%rB,Gl:)g
% University of Wisconsin-Madison
lfBCzxifC
% 1415 Engineering Drive
Y1lUO[F j
% Madison, WI 53706-1691
-)%\$z
%
kjwillis@wisc.edu
4(,.<#
%
:#vA5kC
% Copyright 2005
?n<F?~
%
$l)RMP}
% This MATLAB M-file implements the finite-difference time-domain
O=}w1]
% solution of Maxwell's curl equations over a three-dimensional
~d&&\EZ
% Cartesian space lattice comprised of uniform cubic grid cells.
!9gpuS[
%
MY{Kq;FvRP
% The dimensions of the computational domain are 8.2 cm
<]?71{7X
% (x-direction), 3.4 cm (y-direction), and 3.2 cm (z-direction).
'sAkrl8kt
% The grid is terminated with UPML absorbing boundary conditions.
O4`.ohAZ
%
12i`82>;
% An electric current source comprised of two collinear Jz components
MNU7OX<
% (realizing a Hertzian dipole) excites a radially propagating wave.
UK OhsE
% The current source is located in the center of the grid. The
nGGw(6c%>
% source waveform is a differentiated Gaussian pulse given by
Eet/l]e#a
% J(t)=J0*(t-t0)*exp(-(t-t0)^2/tau^2),
!=30s;-
% where tau=50 ps. The FWHM spectral bandwidth of this zero-dc-
'[6]W)f
% content pulse is approximately 7 GHz. The grid resolution
ecm+33C
% (dx = 2 mm) was chosen to provide at least 10 samples per
e3n^$'/\r
% wavelength up through 15 GHz.
|j"C52Q
%
[e,xC!2
% To execute this M-file, type "fdtd3D_UPML" at the MATLAB prompt.
7r,GdP .
%
53/$8=
% This code has been tested in the following Matlab environments:
8]&Fu3M^
% Matlab version 6.1.0.450 Release 12.1 (May 18, 2001)
oBmv^=cH
% Matlab version 6.5.1.199709 Release 13 Service Pack 1 (August 4, 2003)
H`<u2fo|p
% Matlab version 7.0.0.19920 R14 (May 6, 2004)
At>e4t2@
% Matlab version 7.0.1.24704 R14 Service Pack 1 (September 13, 2004)
;|T|*0vY[
% Matlab version 7.0.4.365 R14 Service Pack 2 (January 29, 2005)
x=0Ak'1M
%
I!F&8B+|
% Note: if you are using Matlab version 6.x, you may wish to make
fV9+FOZn
% one or more of the following modifications to this code:
.\H-?6R^
% --uncomment line numbers 485 and 486
euY+jc%
% --comment out line numbers 552 and 561
4qDa:D"5
%
%^W(sB$b
%***********************************************************************
gD%o0jt"
Nj4r[5K
clear %清除变量
<Y /3U
$ ^)g,
%***********************************************************************
@<P;F
% Fundamental constants
dw#pObH|`
%***********************************************************************
MuO(%.H
h_X'O3r
cc=2.99792458e8; %光速M/S
oTk\r$4eb
muz=4.0*pi*1.0e-7; %自由空间磁导率
y< gRl/e
epsz=1.0/(cc*cc*muz); %自由空间介电常数值
n<EIu
etaz=sqrt(muz/epsz); %自由空间波阻抗
Y<^Or
$lB!Q8a$
%***********************************************************************
gs}&a3d7k
% Material parameters
FM3.z)>
%***********************************************************************
{<IHiB35q
4Tuh]5
mur=1.0; %相对磁导率
Q~^v=ye
epsr=1.0; %相对介电常数值
*#p}FB2H#
eta=etaz*sqrt(mur/epsr); %波阻抗
gRs@T<k2
=Q;dYx%I5
%***********************************************************************
tZ) ,Z<
% Grid parameters
=WF@S1
%
_0 [s]
% Each grid size variable name describes the number of sampled points
W SvhC
% for a particular field component in the direction of that component.
xNY&*jI
% Additionally, the variable names indicate the region of the grid
c&#Q`m
% for which the dimension is relevant. For example, ie_tot is the
Lniz>gSc
% number of sample points of Ex along the x-axis in the total
r *N@%T
% computational grid, and jh_bc is the number of sample points of Hy
v7j/_;JE;
% along the y-axis in the y-normal UPML regions.
[)X( Qtk
%
u YFy4E3
%***********************************************************************
O 8 l`1
c(Xm~ 'jeH
ie=50; % Size of main grid
ixy:S1pI
je=50;
r,|}^u8`
ke=50;
5a6d3u/
ih=ie+1;
_ y'g11 \
jh=je+1;
m k~F@
kh=ke+1;
C^JtJv
Qt"jU+Zoy
upml=3; % Thickness of PML boundaries
REc90v2"
ih_bc=upml+1;
Cjt].XR@
jh_bc=upml+1;
1Xcj=I-4
kh_bc=upml+1;
!j6CvclT
3-y2i/4}$
ie_tot=ie+2*upml; % Size of total computational domain
0<-A2O),
je_tot=je+2*upml;
1"A"AMZf
ke_tot=ke+2*upml;
MR,>]| ^
ih_tot=ie_tot+1;
q%s<y+
jh_tot=je_tot+1;
(CAVOed
kh_tot=ke_tot+1;
!K.)Qr9 V
=f=>buD
is=round(ih_tot/2); % 波源的位置,Location of z-directed current source round()最近法取整
9u^za!pE
js=round(jh_tot/2);
f U<<GK70
ks=round(ke_tot/2);
/L`qOr2E
UM1h[#?&V)
%***********************************************************************
X.e4pLwGK
% Fundamental grid parameters
}uD*\.
%***********************************************************************
" u]X/ {L
^~B#r#
delta=0.002; %空间步长,单位为米m 应满足稳定性条件
cor!S a>
dt=delta*sqrt(epsr*mur)/(2.0*cc); %时间步长,单位为秒s
CW@EQ3y0
nmax=150;
sz7<u|
%nmax=400; %迭代次数
/xg1i1Et
s7`2ky()kz
%***********************************************************************
z/o&r`no
% Differentiated Gaussian pulse excitation
gW G>}M@
%***********************************************************************
2zsDb'r
!y1qd
rtau=50.0e-12; %设置高斯激励源
3cqc<
tau=rtau/dt; %
6[Mu3.T
ndelay=3*tau; %
7CU<R9Kl
J0=-1.0*epsz; %?
Fyz1LOH[X
YFcMU5_F
%***********************************************************************
NljcHe}Qy
% Initialize field arrays
;x)f;!e+
%***********************************************************************
o -x=/b
gf;B&MM6
ex=zeros(ie_tot,jh_tot,kh_tot); %为变量分配空间,已包含吸收边界,E和H变量空间颠倒 应为Ex(i+1/2,j,k),Ey(i,j+1/2,k),Ez(i,j,k+1/2)
0 4ceDe
ey=zeros(ih_tot,je_tot,kh_tot);
!9S!zRy@
ez=zeros(ih_tot,jh_tot,ke_tot);
06af{FXsGb
dx=zeros(ie_tot,jh_tot,kh_tot); %dx为ex系数
)\e0L/K@
dy=zeros(ih_tot,je_tot,kh_tot); %dy为ey系数
Np opg1Gv>
dz=zeros(ih_tot,jh_tot,ke_tot); %dz为ez系数
#cl|5jm+m#
x;&iLQZh
hx=zeros(ih_tot,je_tot,ke_tot); %为变量分配空间,已包含吸收边界,E和H变量空间颠倒 应为Hx(i,j+1/2,k+1/2),Hy(i+1/2,j,k+1/2),Hz(i+1/2,j+1/2,k)
Y>i Qp/k:
hy=zeros(ie_tot,jh_tot,ke_tot);
*6(/5V
hz=zeros(ie_tot,je_tot,kh_tot);
_Pw5n mH c
bx=zeros(ih_tot,je_tot,ke_tot); %bx为hx系数
uq!d8{IMu
by=zeros(ie_tot,jh_tot,ke_tot); %by为hy系数
LqQ&4I
bz=zeros(ie_tot,je_tot,kh_tot); %bz为hz系数
ZB$,\|^6
KjV1->r#
%***********************************************************************
utdus:B#0
% Initialize update coefficient arrays
3 lKBwjW
%***********************************************************************
& @$ D(
['c*<f" D2
C1ex=zeros(size(ex)); %为ex系数
E_xCRfw_i]
C2ex=zeros(size(ex));
)P W Zc?M
C3ex=zeros(size(ex));
0#sf,ja>
C4ex=zeros(size(ex));
Y0Rk:Njc
C5ex=zeros(size(ex));
mnYzn[d3U
C6ex=zeros(size(ex));
n7#}i2:
pr\OjpvD
C1ey=zeros(size(ey)); %为ey系数
B%co`0$
C2ey=zeros(size(ey));
,7Q b24A
C3ey=zeros(size(ey));
xCU pMB7
C4ey=zeros(size(ey));
|3EKK:RE
C5ey=zeros(size(ey));
DRu#vC
C6ey=zeros(size(ey));
avMre_@V
yEL5U{
C1ez=zeros(size(ez)); %为ez系数
C%P"\>5@
C2ez=zeros(size(ez));
G{'`L)~3N
C3ez=zeros(size(ez));
cS|W&IH1
C4ez=zeros(size(ez));
p?<T _9e
C5ez=zeros(size(ez));
J.,7d ,
C6ez=zeros(size(ez));
GZiN&}5e
$.Qq:(O:6
D1hx=zeros(size(hx)); %为hx系数
I!p[:.t7
D2hx=zeros(size(hx));
c_6~zb?k+m
D3hx=zeros(size(hx));
V?Ca[
D4hx=zeros(size(hx));
y $>U[^G[
D5hx=zeros(size(hx));
.gwT?O,
D6hx=zeros(size(hx));
;`Wh^Qgi
!y;xt?
D1hy=zeros(size(hy)); %为hy系数
|HTTTz9R.
D2hy=zeros(size(hy));
35#"]l"
D3hy=zeros(size(hy));
.Nd_p{
D4hy=zeros(size(hy));
'oM&Ar$
D5hy=zeros(size(hy));
KupQtT<
D6hy=zeros(size(hy));
K"=I,Vr:
O1z3(
D1hz=zeros(size(hz)); %为hz系数
`Yo!sgPO\
D2hz=zeros(size(hz));
$2v{4WP7G
D3hz=zeros(size(hz));
Q$S|L C
D4hz=zeros(size(hz));
fXx !_Z
D5hz=zeros(size(hz));
2$> <rB
D6hz=zeros(size(hz));
O&PrO+&
w"FBJULzn9
%***********************************************************************
J+nUxF;EE
% Update coefficients, as described in Section 7.8.2.
=@ed{~
%
Z2{G{]EV(
% In order to simplify the update equations used in the time-stepping
lDtl6r/
% loop, we implement UPML update equations throughout the entire
tc<HA7vpt~
% grid. In the main grid, the electric-field update coefficients of
*46hw(L
% Equations 7.91a-f and the correponding magnetic field update
:&=`xAX-
% coefficients extracted from Equations 7.89 and 7.90 are simplified
D"s ]dQ$r
% for the main grid (free space) and calculated below.
^s3 SzB@
%
li)shp)
%***********************************************************************
>~* w
&n2dL->*#
C1=1.0;
uPL|3ACS
C2=dt;
zqGo7;;#
C3=1.0;
R|t.JoP9
C4=1.0/2.0/epsr/epsr/epsz/epsz;
-* piC(
C5=2.0*epsr*epsz;
5l /EZ\q
C6=2.0*epsr*epsz;
iy,jq5uw
|D[4G6&
D1=1.0;
=8 Jq'-da
D2=dt;
K2oyHw<mk
D3=1.0;
kKNrCv@64d
D4=1.0/2.0/epsr/epsz/mur/muz;
a*UxRi8
D5=2.0*epsr*epsz;
iriF'(1
D6=2.0*epsr*epsz;
,=t}|!jx
\QMRuR.
% C1=1.0;
]n&Eb88
% C2=dt;
!Im{-t
% C3=1.0;
af;~<oa
% C4=1.0/2.0/epsr/epsz/epsz;
p>0n~e
% C5=2.0*epsz;
j?oh~7Ki
% C6=2.0*epsz;
v^Pjvv =
%
CoQ<Ky}*
% D1=1.0;
{w VJv1*l
% D2=dt;
rTYMN
% D3=1.0;
J*"G*x#u
% D4=1.0/2.0/epsz/mur/muz;
C1SCV^#
% D5=2.0*epsz;
#BwkbOgr
% D6=2.0*epsz;
|7E1yu
%***********************************************************************
S5xum_Dq
% Initialize main grid update coefficients
T.#Vma
%***********************************************************************
OOX[xv!b
]w9\q*S]
C1ex(:,jh_bc:jh_tot-upml,:)=C1;
#bdSH)V
%size(C1ex(:,jh_bc:jh_tot-upml,:))
~V!gHJ5M
C2ex(:,jh_bc:jh_tot-upml,:)=C2;
~_hn{Ous
%size(C2ex(:,jh_bc:jh_tot-upml,:))
A@#D_[~
C3ex(:,:,kh_bc:kh_tot-upml)=C3;
LRmH@-qP
%size(C3ex(:,:,kh_bc:kh_tot-upml))
ZuVucP>>_d
C4ex(:,:,kh_bc:kh_tot-upml)=C4;
iz\GahK
%size(C4ex(:,:,kh_bc:kh_tot-upml))
^@n?&
C5ex(ih_bc:ie_tot-upml,:,:)=C5;
ycSC'R
%size(C5ex(ih_bc:ie_tot-upml,:,:))
&0%x6vea
C6ex(ih_bc:ie_tot-upml,:,:)=C6;
qHra9yuSh
%size(C6ex(ih_bc:ie_tot-upml,:,:))
1usLCG>w{
xa|/P#q
C1ey(:,:,kh_bc:kh_tot-upml)=C1;
Kv>P+I'|r
C2ey(:,:,kh_bc:kh_tot-upml)=C2;
zQyt 1&!
C3ey(ih_bc:ih_tot-upml,:,:)=C3;
)Uu! x6
C4ey(ih_bc:ih_tot-upml,:,:)=C4;
.Fn7yTQ%
C5ey(:,jh_bc:je_tot-upml,:)=C5;
/.%AE|0+X
C6ey(:,jh_bc:je_tot-upml,:)=C6;
Ld:U~M-
u(g0Ob
C1ez(ih_bc:ih_tot-upml,:,:)=C1;
{Z{!tR?+
C2ez(ih_bc:ih_tot-upml,:,:)=C2;
-}Q^A_xK
C3ez(:,jh_bc:jh_tot-upml,:)=C3;
dhmZ3 ~cW>
C4ez(:,jh_bc:jh_tot-upml,:)=C4;
^|ln q.j
C5ez(:,:,kh_bc:ke_tot-upml)=C5;
3!0~/8!f@
C6ez(:,:,kh_bc:ke_tot-upml)=C6;
9w( Wtw'
0l>4Umxr{J
D1hx(:,jh_bc:je_tot-upml,:)=D1;
hy{1 Ea/T
D2hx(:,jh_bc:je_tot-upml,:)=D2;
f"g-Hbl5
D3hx(:,:,kh_bc:ke_tot-upml)=D3;
?*2Uw{~}
D4hx(:,:,kh_bc:ke_tot-upml)=D4;
A&/YnJ"
D5hx(ih_bc:ih_tot-upml,:,:)=D5;
Jde@Th
D6hx(ih_bc:ih_tot-upml,:,:)=D6;
:7jDgqn^|i
d{G*1l(X
D1hy(:,:,kh_bc:ke_tot-upml)=D1;
{S5HH"
D2hy(:,:,kh_bc:ke_tot-upml)=D2;
Avn)%9
D3hy(ih_bc:ie_tot-upml,:,:)=D3;
%cFqD & 6
D4hy(ih_bc:ie_tot-upml,:,:)=D4;
w{5v*SHl}`
D5hy(:,jh_bc:jh_tot-upml,:)=D5;
zY&/^^y
D6hy(:,jh_bc:jh_tot-upml,:)=D6;
z ,q1TU9
$@Kwsoh'
D1hz(ih_bc:ie_tot-upml,:,:)=D1;
sAfNu~d
D2hz(ih_bc:ie_tot-upml,:,:)=D2;
a!Ht81gj
D3hz(:,jh_bc:je_tot-upml,:)=D3;
a\?-uJ+
D4hz(:,jh_bc:je_tot-upml,:)=D4;
SK G!DKQ
D5hz(:,:,kh_bc:kh_tot-upml)=D5;
! 4{T<s;q
D6hz(:,:,kh_bc:kh_tot-upml)=D6;
Ym5ji$!2
wj#A#[e
%***********************************************************************
!f!HVna
% Fill in PML regions
QFX )Nov];
%
Bi$nYV)-l
% PML theory describes a continuous grading of the material properties
68-2EWq
% over the PML region. In the FDTD grid it is necessary to discretize
,"EgYd8-'
% the grading by averaging the material properties over a grid cell
;f+bIYQz
% width centered on each field component. As an example of the
?0k4l8R
% implementation of this averaging, we take the integral of the
brt1Kvu8(
% continuous sigma(x) in the PML region
&'d3Yt
%
Rt2<F-gY
% sigma_i = integral(sigma(x))/delta
Emx`+9
%
we;QrS(Hi
% where the integral is over a single grid cell width in x, and is
On4tK\l@
% bounded by x1 and x2. Applying this to the polynomial grading of
nN$aZSb`
% Equation 7.60a produces
TW5Pt{X=f
%
N=@Nn)
% sigma_i = (x2^(m+1)-x1^(m+1))*sigmam/(delta*(m+1)*d^m)
f15f)P
%
eY#_!{*Wn
% where sigmam is the maximum value of sigma as described by Equation
ym.:I@b?6
% 7.62.
( ,!G$~Sy
%
vv5 u U8
% The definitions of x1 and x2 depend on the position of the field
r\DA&b
% component within the grid cell. We have either
>* >}d%
%
, UiA?7k
% x1 = (i-0.5)*delta, x2 = (i+0.5)*delta
Y+0HC2(o
%
C)xM>M_CB
% or
vo JmNH
%
N#zh$0!8bJ
% x1 = (i)*delta, x2 = (i+1)*delta
/7[X_)OG
%
2E*h,Mo
% where i varies over the PML region.
rwSmdJ~
%
P{gy/'PH,
%***********************************************************************
}6!*H!
&yN/AY`U
rmax=exp(-16); %desired reflection error, designated as R(0) in Equation 7.62
oZSPdk
%AnqT|\#,
orderbc=4; %order of the polynomial grading, designated as m in Equation 7.60a,b
w_lN[u-L
b!3Y<D*
% x-varying material properties
$Y9Wzv3Ra
delbc=upml*delta; %d 厚度
+JrbC/&
sigmam=-log(rmax)*(orderbc+1.0)/(2.0*eta*delbc); %由rmax求sigma_max
HHcWyu
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1.0));
mKN#dmw6
kmax=1;
bfl%yGkd/|
kfactor=(kmax-1.0)/delta/(orderbc+1.0)/delbc^orderbc;
-K*&I!
/Dk`vn2 eN
for i=1:upml
qVMBZ\`Qm
X4{O/G
% Coefficients for field components in the center of the grid cell
0; BX
x1=(upml-i+1)*delta;
|VxO ,[~
x2=(upml-i)*delta;
s%l`XW;v
sigma=sigfactor*(x1^(orderbc+1)-x2^(orderbc+1));
\1R<GBC4
ki=1+kfactor*(x1^(orderbc+1)-x2^(orderbc+1));
LOf)D7T
facm=(2*epsr*epsz*ki-sigma*dt);
%6eQ;Rp*
facp=(2*epsr*epsz*ki+sigma*dt);
[+4/M3J%
1'Y7h;\~\
C5ex(i,:,:)=facp;
AIX?840V
C5ex(ie_tot-i+1,:,:)=facp;
ipdGAG
C6ex(i,:,:)=facm;
dAkJ5\=*
C6ex(ie_tot-i+1,:,:)=facm;
[)S&PK
D1hz(i,:,:)=facm/facp;
N^;rLrm*
D1hz(ie_tot-i+1,:,:)=facm/facp;
a15kFun
D2hz(i,:,:)=2.0*epsr*epsz*dt/facp;
dD.;P=AP
D2hz(ie_tot-i+1,:,:)=2.0*epsr*epsz*dt/facp;
gyf9D]W
D3hy(i,:,:)=facm/facp;
q6a7o=BP]
D3hy(ie_tot-i+1,:,:)=facm/facp;
k2Y *
D4hy(i,:,:)=1.0/facp/mur/muz;
.qGfLvx%
D4hy(ie_tot-i+1,:,:)=1.0/facp/mur/muz;
nOj0"c
Z.rR)
% Coefficients for field components on the grid cell boundary
Q8>
x1=(upml-i+1.5)*delta;
N~t4qlC/
x2=(upml-i+0.5)*delta;
6h%_\I.Z[[
sigma=sigfactor*(x1^(orderbc+1)-x2^(orderbc+1));
nkii0YB!
ki=1.0+kfactor*(x1^(orderbc+1)-x2^(orderbc+1));
gUtxyW
facm=(2.0*epsr*epsz*ki-sigma*dt);
1b4/
facp=(2.0*epsr*epsz*ki+sigma*dt);
CP"
{RPZq2Tpc
C1ez(i,:,:)=facm/facp;
I@jXW>$
C1ez(ih_tot-i+1,:,:)=facm/facp;
j8#xNA
C2ez(i,:,:)=2.0*epsr*epsz*dt/facp;
rIJv(&l
C2ez(ih_tot-i+1,:,:)=2.0*epsr*epsz*dt/facp;
*j"u~ NF
C3ey(i,:,:)=facm/facp;
.Qz412
C3ey(ih_tot-i+1,:,:)=facm/facp;
Zm+QhnY|
C4ey(i,:,:)=1.0/facp/epsr/epsz;
?&rt)/DV,
C4ey(ih_tot-i+1,:,:)=1.0/facp/epsr/epsz;
fNnX{Wq
D5hx(i,:,:)=facp;
yirQ
D5hx(ih_tot-i+1,:,:)=facp;
3:~ *cU
D6hx(i,:,:)=facm;
z3l(4W P
D6hx(ih_tot-i+1,:,:)=facm;
DL]\dD
3L1MMUACL
end
s !XJ
2=V~n)'a
% PEC walls
nXFPoR)T
C1ez(1,:,:)=-1.0;
hF;TX.Y6
C1ez(ih_tot,:,:)=-1.0;
2SV}mK U
C2ez(1,:,:)=0.0;
{$fd?| 9h
C2ez(ih_tot,:,:)=0.0;
' zz^!@
C3ey(1,:,:)=-1.0;
i}E&mv'
C3ey(ih_tot,:,:)=-1.0;
bji^b@us_
C4ey(1,:,:)=0.0;
|O4LR,{G.w
C4ey(ih_tot,:,:)=0.0;
7x5wT ?2W
_Z{EO|L
% y-varying material properties
OuuN~yC
delbc=upml*delta;
[oS4WP
sigmam=-log(rmax)*epsr*epsz*cc*(orderbc+1.0)/(2.0*delbc);
ILyI%DA &
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1.0));
7wB*@a-
kmax=1.0;
dDxb}dx8
kfactor=(kmax-1.0)/delta/(orderbc+1.0)/delbc^orderbc;
'%y5Dh
<2,NWn.
for j=1:upml
nC 2e^=^
N&jHU+{OU
% Coefficients for field components in the center of the grid cell
8LH\a.>
y1=(upml-j+1)*delta;
q\]"}M8
y2=(upml-j)*delta;
QuWWa|g^.
sigma=sigfactor*(y1^(orderbc+1)-y2^(orderbc+1));
'Vz Yf^
ki=1+kfactor*(y1^(orderbc+1)-y2^(orderbc+1));
UZJ<|[
facm=(2*epsr*epsz*ki-sigma*dt);
%]1.)j
facp=(2*epsr*epsz*ki+sigma*dt);
f<;w1sM\
![H{ndH!Q
C5ey(:,j,:)=facp;
L=# nnj-
C5ey(:,je_tot-j+1,:)=facp;
J_eu(d[9
C6ey(:,j,:)=facm;
Wkj0z]]?
C6ey(:,je_tot-j+1,:)=facm;
rGIf/=G^r
D1hx(:,j,:)=facm/facp;
&V7