登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
时域有限差分法 FDTD
>
关于UPML吸收边界的一些问题,求大家进来看 ..
发帖
回复
1108
阅读
0
回复
[
求助
]
关于UPML吸收边界的一些问题,求大家进来看看
离线
shao63468308
UID :105187
注册:
2013-03-07
登录:
2013-06-06
发帖:
24
等级:
仿真新人
0楼
发表于: 2013-05-22 12:28:33
NIgt"o[I
%***********************************************************************
SXhJz=h
% 3-D FDTD code with UPML absorbing boundary conditions
3TJNlS
%***********************************************************************
>uVG]
%
Fax73vl|^a
% Program author: Keely J. Willis, Graduate Student
_|F h^hq
% UW Computational Electromagnetics Laboratory
%c&h:7);
% Director: Susan C. Hagness
WA<~M)rb
% Department of Electrical and Computer Engineering
4:K9FqU
% University of Wisconsin-Madison
@+xQj.jNC
% 1415 Engineering Drive
f}fM%0/5
% Madison, WI 53706-1691
KMZ% 1=a
%
kjwillis@wisc.edu
G#csN&|,
%
2Bx\nLf/ K
% Copyright 2005
[P<oyd@#
%
wBr0s*1I
% This MATLAB M-file implements the finite-difference time-domain
se?nx7~
% solution of Maxwell's curl equations over a three-dimensional
x[_+U4-/
% Cartesian space lattice comprised of uniform cubic grid cells.
Ft07>E$/Q^
%
2JbCYCTC
% The dimensions of the computational domain are 8.2 cm
ej0q*TH.
% (x-direction), 3.4 cm (y-direction), and 3.2 cm (z-direction).
(LnKaf8
% The grid is terminated with UPML absorbing boundary conditions.
6(eyUgnb
%
CzwnmSv{.
% An electric current source comprised of two collinear Jz components
1(-)$m8}
% (realizing a Hertzian dipole) excites a radially propagating wave.
B${Q Y)t
% The current source is located in the center of the grid. The
:/u EPki
% source waveform is a differentiated Gaussian pulse given by
Alrk3I3{
% J(t)=J0*(t-t0)*exp(-(t-t0)^2/tau^2),
zfS`@{;F`|
% where tau=50 ps. The FWHM spectral bandwidth of this zero-dc-
gG#M-2P
% content pulse is approximately 7 GHz. The grid resolution
5-MI7I@l
% (dx = 2 mm) was chosen to provide at least 10 samples per
c+q4sNnE
% wavelength up through 15 GHz.
z 6p.{M
%
Tfj%Sb,zM
% To execute this M-file, type "fdtd3D_UPML" at the MATLAB prompt.
5YRa2#d
%
M]oaWQu
% This code has been tested in the following Matlab environments:
NL1Ajms`
% Matlab version 6.1.0.450 Release 12.1 (May 18, 2001)
NZv1dy`fa
% Matlab version 6.5.1.199709 Release 13 Service Pack 1 (August 4, 2003)
QqRL>.)W
% Matlab version 7.0.0.19920 R14 (May 6, 2004)
i`X/d=
% Matlab version 7.0.1.24704 R14 Service Pack 1 (September 13, 2004)
z+;+c$X
% Matlab version 7.0.4.365 R14 Service Pack 2 (January 29, 2005)
XXO
%
>1W)J3
% Note: if you are using Matlab version 6.x, you may wish to make
R@;kYS
% one or more of the following modifications to this code:
\h :$q E7
% --uncomment line numbers 485 and 486
UF?qL1w
% --comment out line numbers 552 and 561
xw`Pq6
%
O Qd,.m
%***********************************************************************
6z~6o0s~
0DGXMO$;
clear %清除变量
T$SGf.-
?xIwQd0
%***********************************************************************
Wq]^1g_
% Fundamental constants
E<0Y;tR
%***********************************************************************
@<h@d_8^k
1X]?-+',.
cc=2.99792458e8; %光速M/S
E-CZk_K9
muz=4.0*pi*1.0e-7; %自由空间磁导率
3d[fP#NY7
epsz=1.0/(cc*cc*muz); %自由空间介电常数值
HG{OkDx]fl
etaz=sqrt(muz/epsz); %自由空间波阻抗
c!b4Y4eJ
6m?}oMz
%***********************************************************************
xse8fGs
% Material parameters
w?Y;pc}1B
%***********************************************************************
,|D<De\v&
PyK)ks!6
mur=1.0; %相对磁导率
{"-uaH>,
epsr=1.0; %相对介电常数值
iXI >>9
eta=etaz*sqrt(mur/epsr); %波阻抗
K;Fy&p^d
)A,MTi
%***********************************************************************
t}+P|$[
% Grid parameters
Gq?JMq#
%
67^?v)|
% Each grid size variable name describes the number of sampled points
2Lm.;l4YO
% for a particular field component in the direction of that component.
Rkgpa/te"
% Additionally, the variable names indicate the region of the grid
Ww:,O48%
% for which the dimension is relevant. For example, ie_tot is the
dxsPX=\:
% number of sample points of Ex along the x-axis in the total
}qxwNmx
% computational grid, and jh_bc is the number of sample points of Hy
udgf{1EB&2
% along the y-axis in the y-normal UPML regions.
Ub3^Js!b%
%
n{aD4&
%***********************************************************************
y$'(/iyz
,-D3tleu`
ie=50; % Size of main grid
g6MK~JG$?h
je=50;
.O@T#0&=_
ke=50;
xO{yr[x"L
ih=ie+1;
`-IX"rf
jh=je+1;
r761vtC#
kh=ke+1;
8a)lrIg
C`Zz\DNG@
upml=3; % Thickness of PML boundaries
ve<D[jQsk
ih_bc=upml+1;
"|`euxYV
jh_bc=upml+1;
JZB7?@h%
kh_bc=upml+1;
'_>8_
CKCot
ie_tot=ie+2*upml; % Size of total computational domain
4"7/+6Z
je_tot=je+2*upml;
5NHNnDhuL
ke_tot=ke+2*upml;
'b~,/lZd
ih_tot=ie_tot+1;
,:;ZzHzR0
jh_tot=je_tot+1;
DgW*Br8<
kh_tot=ke_tot+1;
WWZ`RY
opc`n}Fc
is=round(ih_tot/2); % 波源的位置,Location of z-directed current source round()最近法取整
bL-+
js=round(jh_tot/2);
V^apDV\AV
ks=round(ke_tot/2);
EZypqe):/C
<*oTVl4fS
%***********************************************************************
GKIO@!@[
% Fundamental grid parameters
R.^ Y'TLyc
%***********************************************************************
dg-nv]7
6fY-DqF!
delta=0.002; %空间步长,单位为米m 应满足稳定性条件
OO#_0qK
dt=delta*sqrt(epsr*mur)/(2.0*cc); %时间步长,单位为秒s
hv (>9N
nmax=150;
#TS:|=
%nmax=400; %迭代次数
gaV>WF
/-s-W<S[
%***********************************************************************
UU'0WIbY6
% Differentiated Gaussian pulse excitation
~>SqJ&-moo
%***********************************************************************
OXp(rJ*bK
#g=7fu{n:
rtau=50.0e-12; %设置高斯激励源
-c4g;;%
tau=rtau/dt; %
t\S=u y
ndelay=3*tau; %
xl>8B/Zmf#
J0=-1.0*epsz; %?
FLUvFD
z[|2od
%***********************************************************************
<x-7MU&
% Initialize field arrays
>\[/e{Q"
%***********************************************************************
A*^aBWFR
JCFiKt9n
ex=zeros(ie_tot,jh_tot,kh_tot); %为变量分配空间,已包含吸收边界,E和H变量空间颠倒 应为Ex(i+1/2,j,k),Ey(i,j+1/2,k),Ez(i,j,k+1/2)
x18(}4
ey=zeros(ih_tot,je_tot,kh_tot);
JCO+_d#x
ez=zeros(ih_tot,jh_tot,ke_tot);
/x q^]0xy
dx=zeros(ie_tot,jh_tot,kh_tot); %dx为ex系数
bY&!d.
dy=zeros(ih_tot,je_tot,kh_tot); %dy为ey系数
m55|&Ux|
dz=zeros(ih_tot,jh_tot,ke_tot); %dz为ez系数
n37P$0
c]}F$[>oN'
hx=zeros(ih_tot,je_tot,ke_tot); %为变量分配空间,已包含吸收边界,E和H变量空间颠倒 应为Hx(i,j+1/2,k+1/2),Hy(i+1/2,j,k+1/2),Hz(i+1/2,j+1/2,k)
h>k[
hy=zeros(ie_tot,jh_tot,ke_tot);
[] cF*en
hz=zeros(ie_tot,je_tot,kh_tot);
FNlS)Bs
bx=zeros(ih_tot,je_tot,ke_tot); %bx为hx系数
?te~[_oT
by=zeros(ie_tot,jh_tot,ke_tot); %by为hy系数
]sLdz^E3D
bz=zeros(ie_tot,je_tot,kh_tot); %bz为hz系数
lV".-:u_
*{DpNV8"
%***********************************************************************
J~}sQ{ 0
% Initialize update coefficient arrays
'Y2ImSWj
%***********************************************************************
x4bmV@b
g|TWoRx:
C1ex=zeros(size(ex)); %为ex系数
nEHmiG
C2ex=zeros(size(ex));
z_f^L %J0
C3ex=zeros(size(ex));
4g+Dp&U
C4ex=zeros(size(ex));
WIKSz {"=/
C5ex=zeros(size(ex));
y7^E`LKK
C6ex=zeros(size(ex));
?mwa6]
cY]BtJ#
C1ey=zeros(size(ey)); %为ey系数
/L{V3}[j
C2ey=zeros(size(ey));
+9exap27
C3ey=zeros(size(ey));
WF] |-)vw
C4ey=zeros(size(ey));
{:]u 6l
C5ey=zeros(size(ey));
3FY87R
C6ey=zeros(size(ey));
QZ& 4W
&8\6%C
C1ez=zeros(size(ez)); %为ez系数
ij5|P4Eka
C2ez=zeros(size(ez));
Nnx dO0X
C3ez=zeros(size(ez));
+N}yqgE
C4ez=zeros(size(ez));
4v.{C"M
C5ez=zeros(size(ez));
?`T Q'#P`
C6ez=zeros(size(ez));
LIE5of
TrPw*4h 9s
D1hx=zeros(size(hx)); %为hx系数
G,e!!J
D2hx=zeros(size(hx));
X6<Ds'I
D3hx=zeros(size(hx));
>t#5eT`_ w
D4hx=zeros(size(hx));
Tm\a%Z`U>
D5hx=zeros(size(hx));
G4rd<V0[D
D6hx=zeros(size(hx));
S ^]mF>xX8
(&MtK1;;
D1hy=zeros(size(hy)); %为hy系数
E5q t~:C|
D2hy=zeros(size(hy));
=&Z#QD"vl
D3hy=zeros(size(hy));
i&^]qL|J
D4hy=zeros(size(hy));
XM f>B|
D5hy=zeros(size(hy));
Fe1XczB
D6hy=zeros(size(hy));
ZiW&*nN?M
/%1-tGh
D1hz=zeros(size(hz)); %为hz系数
6t=)1T
D2hz=zeros(size(hz));
RiG]-K:
D3hz=zeros(size(hz));
BD- c<K"
D4hz=zeros(size(hz));
o-<XR9,N*
D5hz=zeros(size(hz));
jr(|-!RVMN
D6hz=zeros(size(hz));
LNcoTdv}k
}Gva=N:
%***********************************************************************
-e O>d}
% Update coefficients, as described in Section 7.8.2.
<ivq}(%72
%
{8 #
% In order to simplify the update equations used in the time-stepping
c+{ ar^)*
% loop, we implement UPML update equations throughout the entire
3tW}a`z9
% grid. In the main grid, the electric-field update coefficients of
Ji.FG"h+2
% Equations 7.91a-f and the correponding magnetic field update
C<#_1@^:8e
% coefficients extracted from Equations 7.89 and 7.90 are simplified
4k!>JQor
% for the main grid (free space) and calculated below.
<UY9<o
%
b,x$wP+
%***********************************************************************
<Uu[nUJ
F9k}zAY\J
C1=1.0;
r{{5@
C2=dt;
dTWcn7C
C3=1.0;
lS|F&I5j
C4=1.0/2.0/epsr/epsr/epsz/epsz;
MU4BAN
C5=2.0*epsr*epsz;
WMS~Bk+!
C6=2.0*epsr*epsz;
z))rk vL%
%Z8wUG
D1=1.0;
+&r=XJ5:`p
D2=dt;
LJA uTg
D3=1.0;
g_@b- :$Yq
D4=1.0/2.0/epsr/epsz/mur/muz;
GX'S4B
D5=2.0*epsr*epsz;
+7{8T{
D6=2.0*epsr*epsz;
jX.'G
Wcbm,O4u
% C1=1.0;
'U,\5jj'Y
% C2=dt;
kzVK%[/
% C3=1.0;
^fV-m&F)K*
% C4=1.0/2.0/epsr/epsz/epsz;
{Y3:Y+2X3*
% C5=2.0*epsz;
Y4+iNdd
% C6=2.0*epsz;
uqVarRi$
%
Gzp*Vr
% D1=1.0;
dXPTW;w
% D2=dt;
^U);MH8
% D3=1.0;
Bjh8uW G
% D4=1.0/2.0/epsz/mur/muz;
cfPp>EK
% D5=2.0*epsz;
y7,t"XV
% D6=2.0*epsz;
411z-aS
%***********************************************************************
>U.7>K V&
% Initialize main grid update coefficients
9rIv-&7'm
%***********************************************************************
#7"";"{z|
0KZ$v/m
C1ex(:,jh_bc:jh_tot-upml,:)=C1;
PzT@q\O
%size(C1ex(:,jh_bc:jh_tot-upml,:))
)LsUO#%DO
C2ex(:,jh_bc:jh_tot-upml,:)=C2;
|n;5D,r0C
%size(C2ex(:,jh_bc:jh_tot-upml,:))
ZENblh8fs
C3ex(:,:,kh_bc:kh_tot-upml)=C3;
Tkn8Wj
%size(C3ex(:,:,kh_bc:kh_tot-upml))
Xy}>O*
C4ex(:,:,kh_bc:kh_tot-upml)=C4;
t>Yl=79,
%size(C4ex(:,:,kh_bc:kh_tot-upml))
l GJ N;G7
C5ex(ih_bc:ie_tot-upml,:,:)=C5;
36Lf8~d4"h
%size(C5ex(ih_bc:ie_tot-upml,:,:))
EN__C$
C6ex(ih_bc:ie_tot-upml,:,:)=C6;
#%pY,AK:=
%size(C6ex(ih_bc:ie_tot-upml,:,:))
XtE O )
TEbIU8{Y
C1ey(:,:,kh_bc:kh_tot-upml)=C1;
`<#O8,7`
C2ey(:,:,kh_bc:kh_tot-upml)=C2;
]z2x`P^oI
C3ey(ih_bc:ih_tot-upml,:,:)=C3;
%0({MU
C4ey(ih_bc:ih_tot-upml,:,:)=C4;
Q[FDk63;w
C5ey(:,jh_bc:je_tot-upml,:)=C5;
B`w8d[cL7
C6ey(:,jh_bc:je_tot-upml,:)=C6;
M,cz7,
TxH amI l
C1ez(ih_bc:ih_tot-upml,:,:)=C1;
lk`|u$KPz
C2ez(ih_bc:ih_tot-upml,:,:)=C2;
><$V:nsEO
C3ez(:,jh_bc:jh_tot-upml,:)=C3;
JE# H&]
C4ez(:,jh_bc:jh_tot-upml,:)=C4;
,Xg^rV~]
C5ez(:,:,kh_bc:ke_tot-upml)=C5;
4pZKm-dM^
C6ez(:,:,kh_bc:ke_tot-upml)=C6;
b!`6s
`)kxFD_bH
D1hx(:,jh_bc:je_tot-upml,:)=D1;
VCT1GsnE
D2hx(:,jh_bc:je_tot-upml,:)=D2;
1(Z+n,Hh
D3hx(:,:,kh_bc:ke_tot-upml)=D3;
p@h<u!rL8
D4hx(:,:,kh_bc:ke_tot-upml)=D4;
99%R/m
D5hx(ih_bc:ih_tot-upml,:,:)=D5;
NBAOVYK
D6hx(ih_bc:ih_tot-upml,:,:)=D6;
C+_UIx]A
~@e=+Z
D1hy(:,:,kh_bc:ke_tot-upml)=D1;
%s ;5
D2hy(:,:,kh_bc:ke_tot-upml)=D2;
A'"J'q*t
D3hy(ih_bc:ie_tot-upml,:,:)=D3;
4q?R 3\e;
D4hy(ih_bc:ie_tot-upml,:,:)=D4;
>>M7#hmt
D5hy(:,jh_bc:jh_tot-upml,:)=D5;
n0t+xvNDF_
D6hy(:,jh_bc:jh_tot-upml,:)=D6;
LoSrXK~0~J
\^!<Y\\
D1hz(ih_bc:ie_tot-upml,:,:)=D1;
1;!dTh
D2hz(ih_bc:ie_tot-upml,:,:)=D2;
uc\G)BN
D3hz(:,jh_bc:je_tot-upml,:)=D3;
c Y+n 6k5
D4hz(:,jh_bc:je_tot-upml,:)=D4;
fJ=(oF=
D5hz(:,:,kh_bc:kh_tot-upml)=D5;
XsSDz}dg
D6hz(:,:,kh_bc:kh_tot-upml)=D6;
:G=ol2Q
Q=Q&\.<
%***********************************************************************
JdUI:(
% Fill in PML regions
:.f(}sCS
%
Bsk` e
% PML theory describes a continuous grading of the material properties
?;Da%VS3
% over the PML region. In the FDTD grid it is necessary to discretize
+i}uRO
% the grading by averaging the material properties over a grid cell
uH7!)LE#
% width centered on each field component. As an example of the
1c*:" k
% implementation of this averaging, we take the integral of the
&'/bnN +R
% continuous sigma(x) in the PML region
]vw%J ^7:a
%
_bv9/# tR
% sigma_i = integral(sigma(x))/delta
%`s1 Ocvp
%
|o^mg9
% where the integral is over a single grid cell width in x, and is
3ly]DTbz
% bounded by x1 and x2. Applying this to the polynomial grading of
BQv*8Hg B6
% Equation 7.60a produces
^* CKx
%
&o&}5Aba9
% sigma_i = (x2^(m+1)-x1^(m+1))*sigmam/(delta*(m+1)*d^m)
K_;?Sr=
%
k9&W0$I#
% where sigmam is the maximum value of sigma as described by Equation
iszVM
% 7.62.
};'~@%U]/
%
]4'V59\
% The definitions of x1 and x2 depend on the position of the field
y>cT{ )E$
% component within the grid cell. We have either
!,sQB_09C
%
@Y ?p-&
% x1 = (i-0.5)*delta, x2 = (i+0.5)*delta
qZlL6
%
	HV
% or
g>a% gVly
%
B"`86qc
% x1 = (i)*delta, x2 = (i+1)*delta
1M?Sl?+j
%
zs'Jgm.v
% where i varies over the PML region.
Z4{N|h?
%
n:}'f- :T
%***********************************************************************
d_&~^*>
{+gK\Nz
rmax=exp(-16); %desired reflection error, designated as R(0) in Equation 7.62
,o0[^-b<
sqj8I"<`
orderbc=4; %order of the polynomial grading, designated as m in Equation 7.60a,b
[t*-s1cq
&O5&pet
% x-varying material properties
RGBntp%
delbc=upml*delta; %d 厚度
a!&m\+?
sigmam=-log(rmax)*(orderbc+1.0)/(2.0*eta*delbc); %由rmax求sigma_max
,0i72J
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1.0));
<AHdz/N
kmax=1;
qy-Hv6oof
kfactor=(kmax-1.0)/delta/(orderbc+1.0)/delbc^orderbc;
,fhwDqR ?
q 1A0-W#4
for i=1:upml
(%fSJCBl[P
^~3{n
% Coefficients for field components in the center of the grid cell
:Yi 4Ia
x1=(upml-i+1)*delta;
u~Y+YzCxV
x2=(upml-i)*delta;
bV*q~@xh
sigma=sigfactor*(x1^(orderbc+1)-x2^(orderbc+1));
!OOOc
ki=1+kfactor*(x1^(orderbc+1)-x2^(orderbc+1));
ph3dm\U.
facm=(2*epsr*epsz*ki-sigma*dt);
o KY0e&5
facp=(2*epsr*epsz*ki+sigma*dt);
461p 4)
}9Q<<a
C5ex(i,:,:)=facp;
+1eb@bX
C5ex(ie_tot-i+1,:,:)=facp;
o<g1;
C6ex(i,:,:)=facm;
Slp_o\s$@
C6ex(ie_tot-i+1,:,:)=facm;
C`aUitL}
D1hz(i,:,:)=facm/facp;
"Fxw"I <
D1hz(ie_tot-i+1,:,:)=facm/facp;
'=UsN_@
D2hz(i,:,:)=2.0*epsr*epsz*dt/facp;
=05jjR1
D2hz(ie_tot-i+1,:,:)=2.0*epsr*epsz*dt/facp;
//#]CsFiP
D3hy(i,:,:)=facm/facp;
?~; q r
D3hy(ie_tot-i+1,:,:)=facm/facp;
\~T&C5
D4hy(i,:,:)=1.0/facp/mur/muz;
8>:u%+C1c
D4hy(ie_tot-i+1,:,:)=1.0/facp/mur/muz;
pQ`S%]k.<
4@@gC&:Y
% Coefficients for field components on the grid cell boundary
irn }.e
x1=(upml-i+1.5)*delta;
y*lAmO
x2=(upml-i+0.5)*delta;
]/Cu,mX
sigma=sigfactor*(x1^(orderbc+1)-x2^(orderbc+1));
&Z+.FTo
ki=1.0+kfactor*(x1^(orderbc+1)-x2^(orderbc+1));
8]J lYe
facm=(2.0*epsr*epsz*ki-sigma*dt);
hNF, sA
facp=(2.0*epsr*epsz*ki+sigma*dt);
n%{oFTLCo
Gx(%AB~9$
C1ez(i,:,:)=facm/facp;
2K2*UC`f
C1ez(ih_tot-i+1,:,:)=facm/facp;
ASr3P5/
C2ez(i,:,:)=2.0*epsr*epsz*dt/facp;
a*o k*r
C2ez(ih_tot-i+1,:,:)=2.0*epsr*epsz*dt/facp;
*C(q{|f
C3ey(i,:,:)=facm/facp;
XE;aJ'kt
C3ey(ih_tot-i+1,:,:)=facm/facp;
#/WjKr n
C4ey(i,:,:)=1.0/facp/epsr/epsz;
.j`8E^7<
C4ey(ih_tot-i+1,:,:)=1.0/facp/epsr/epsz;
J*qo3aJjE
D5hx(i,:,:)=facp;
9YwS"~Q =w
D5hx(ih_tot-i+1,:,:)=facp;
6/|"y
D6hx(i,:,:)=facm;
B(pHo&ox
D6hx(ih_tot-i+1,:,:)=facm;
K$-|7tJon
bE" J&;|
end
^K!R4Y4t
3\5I4#S
% PEC walls
A~'p~@L
C1ez(1,:,:)=-1.0;
0Pg@%>yb~
C1ez(ih_tot,:,:)=-1.0;
<##aD3)
C2ez(1,:,:)=0.0;
d)v!U+-|'
C2ez(ih_tot,:,:)=0.0;
Jv D`RUh
C3ey(1,:,:)=-1.0;
\6,Z<.I
C3ey(ih_tot,:,:)=-1.0;
_;k))K^
C4ey(1,:,:)=0.0;
Ap`D{u/
C4ey(ih_tot,:,:)=0.0;
oRl@AhS
9`DY6qfly
% y-varying material properties
Z DnAzAR
delbc=upml*delta;
-V}ZbXJD
sigmam=-log(rmax)*epsr*epsz*cc*(orderbc+1.0)/(2.0*delbc);
,jMV #H[
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1.0));
&0J/V>k
kmax=1.0;
)H1chNI)
kfactor=(kmax-1.0)/delta/(orderbc+1.0)/delbc^orderbc;
rB3b
O9)k)A]`O
for j=1:upml
Y\{lQMCy
ZHc;8|}
% Coefficients for field components in the center of the grid cell
bqUQadDB
y1=(upml-j+1)*delta;
XOJ@-^BX
y2=(upml-j)*delta;
_ 4+=S)$
sigma=sigfactor*(y1^(orderbc+1)-y2^(orderbc+1));
"RsH'`
ki=1+kfactor*(y1^(orderbc+1)-y2^(orderbc+1));
7R".$ p
facm=(2*epsr*epsz*ki-sigma*dt);
, -S n
facp=(2*epsr*epsz*ki+sigma*dt);
D{s4Bo-
\ffU15@N
C5ey(:,j,:)=facp;
}i2dXC/
C5ey(:,je_tot-j+1,:)=facp;
kA&ul
C6ey(:,j,:)=facm;
7.xJ:r|
C6ey(:,je_tot-j+1,:)=facm;
v:@ud,d<
D1hx(:,j,:)=facm/facp;
~uu~NTz
D1hx(:,je_tot-j+1,:)=facm/facp;
58_aI?~>>
D2hx(:,j,:)=2*epsr*epsz*dt/facp;
F6#U31Q=
D2hx(:,je_tot-j+1,:)=2*epsr*epsz*dt/facp;
aV?r %'~Z
D3hz(:,j,:)=facm/facp;
7j%sM&
D3hz(:,je_tot-j+1,:)=facm/facp;
w^QqYUL${
D4hz(:,j,:)=1/facp/mur/muz;
TZk.h8
D4hz(:,je_tot-j+1,:)=1/facp/mur/muz;
DX#F]8bWl
0B~Q.tyP
% Coefficients for field components on the grid cell boundary
(ZuV5|N
y1=(upml-j+1.5)*delta;
WnC0T5S?U
y2=(upml-j+0.5)*delta;
v4wXa:CJ
sigma=sigfactor*(y1^(orderbc+1)-y2^(orderbc+1));
_k.gVm
ki=1+kfactor*(y1^(orderbc+1)-y2^(orderbc+1));
9TW
facm=(2*epsr*epsz*ki-sigma*dt);
@?"t&h
facp=(2*epsr*epsz*ki+sigma*dt);
1Du9N[2'P
a fhZM$
C1ex(:,j,:)=facm/facp;
64qQ:D7C
C1ex(:,jh_tot-j+1,:)=facm/facp;
;^:$O6J7T~
C2ex(:,j,:)=2*epsr*epsz*dt/facp;
98eS f
C2ex(:,jh_tot-j+1,:)=2*epsr*epsz*dt/facp;
x+5y287#
C3ez(:,j,:)=facm/facp;
quw:4W>
C3ez(:,jh_tot-j+1,:)=facm/facp;
-2Azpeh
C4ez(:,j,:)=1/facp/epsr/epsz;
s *1%I$=@
C4ez(:,jh_tot-j+1,:)=1/facp/epsr/epsz;
wH[}@ w
D5hy(:,j,:)=facp;
dbLxm!;(
D5hy(:,jh_tot-j+1,:)=facp;
S~DY1e54GF
D6hy(:,j,:)=facm;
~j2=hkS
D6hy(:,jh_tot-j+1,:)=facm;
n;Etn!4M
>jDx-H.N
end
XD\Z$\UJE
8RR6f98FF
% PEC walls
/q8?xP.
C1ex(:,1,:)=-1;
>qI|g={M
C1ex(:,jh_tot,:)=-1;
mg^\"GC*8
C2ex(:,1,:)=0;
>xE{& ):
C2ex(:,jh_tot,:)=0;
c F(]`49(
C3ez(:,1,:)=-1;
L)ry!BuHI
C3ez(:,jh_tot,:)=-1;
9#@CmiIhy
C4ez(:,1,:)=0;
0Ti>PR5M
C4ez(:,jh_tot,:)=0;
m=<;)
~X -.@k'
% z-varying material properties
RycO8z*p
delbc=upml*delta;
L"6@3
sigmam=-log(rmax)*epsr*epsz*cc*(orderbc+1)/(2*delbc);
9jwo f}OU
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1));
H;n(qBSB
kmax=1;
O}3M+
kfactor=(kmax-1)/delta/(orderbc+1)/delbc^orderbc;
z[wk-a+w
{L8(5
for k=1:upml
aJ Du_
ZWJFd(6
% Coefficients for field components in the center of the grid cell
?iBHJ{
z1=(upml-k+1)*delta;
PF(P"f.?D
z2=(upml-k)*delta;
prY9SQd
sigma=sigfactor*(z1^(orderbc+1)-z2^(orderbc+1));
t%AW0#TZ
ki=1+kfactor*(z1^(orderbc+1)-z2^(orderbc+1));
~U~4QQ V
facm=(2*epsr*epsz*ki-sigma*dt);
lA<IcW
facp=(2*epsr*epsz*ki+sigma*dt);
ngJES`0d
?D6rFUs9;
C5ez(:,:,k)=facp;
$*H>n!&
C5ez(:,:,ke_tot-k+1)=facp;
Bv |Z)G%RR
C6ez(:,:,k)=facm;
#+eV5%Si
C6ez(:,:,ke_tot-k+1)=facm;
JPk3T.qp
D1hy(:,:,k)=facm/facp;
WiL~b =fT
D1hy(:,:,ke_tot-k+1)=facm/facp;
O!uB|*
D2hy(:,:,k)=2*epsr*epsz*dt/facp;
T`=N^Ca1!`
D2hy(:,:,ke_tot-k+1)=2*epsr*epsz*dt/facp;
2g^Kf,m
D3hx(:,:,k)=facm/facp;
g5to0
D3hx(:,:,ke_tot-k+1)=facm/facp;
pDlh^?cux
D4hx(:,:,k)=1/facp/mur/muz;
d}',Bl+u{$
D4hx(:,:,ke_tot-k+1)=1/facp/mur/muz;
*#;rp~
YAZ=-@]`\
% Coefficients for field components on the grid cell boundary
3P p*ID
z1=(upml-k+1.5)*delta;
$hO8 S =
z2=(upml-k+0.5)*delta;
GKPqBi[rO
sigma=sigfactor*(z1^(orderbc+1)-z2^(orderbc+1));
\o@b5z]e
ki=1+kfactor*(z1^(orderbc+1)-z2^(orderbc+1));
^dYLB.'=
facm=(2*epsr*epsz*ki-sigma*dt);
ASaG }h
facp=(2*epsr*epsz*ki+sigma*dt);
b\?#O}
6SsZK)X
C1ey(:,:,k)=facm/facp;
Pwz^{*u]
C1ey(:,:,kh_tot-k+1)=facm/facp;
h{ce+~X
C2ey(:,:,k)=2*epsr*epsz*dt/facp;
|_~BV&g,N
C2ey(:,:,kh_tot-k+1)=2*epsr*epsz*dt/facp;
j>R7OGg'
C3ex(:,:,k)=facm/facp;
~%Yh`c EP
C3ex(:,:,kh_tot-k+1)=facm/facp;
AJ:@c7:eS
C4ex(:,:,k)=1/facp/epsr/epsz;
$X~=M_W
C4ex(:,:,kh_tot-k+1)=1/facp/epsr/epsz;
c e=6EYl
D5hz(:,:,k)=facp;
bTHa;* `
D5hz(:,:,kh_tot-k+1)=facp;
Ze Shn
D6hz(:,:,k)=facm;
S,S_BB<Y[b
D6hz(:,:,kh_tot-k+1)=facm;
QbqLj>-AJ
=GM!M@~,Ab
end
60AX2-sdJ,
`U`Z9q5-
% PEC walls
YQX>)'
C1ey(:,:,1)=-1;
^"+cJ)
C1ey(:,:,kh_tot)=-1;
/yrR f;}<O
C2ey(:,:,1)=0;
dt3Vy*zL
C2ey(:,:,kh_tot)=0;
Punbw\9!d,
C3ex(:,:,1)=-1;
OR"n i
C3ex(:,:,kh_tot)=-1;
2#W%--
C4ex(:,:,1)=0;
9f,HjRP
C4ex(:,:,kh_tot)=0;
,%nmCetD@
^ad> (W
%figure
=AcbX_[
%set(gcf,'DoubleBuffer','on')
{Y'_QW1:2
nNilTJ
%***********************************************************************
Bdbw!zRR$
% Begin time stepping loop
( v ~/glf
%***********************************************************************
gi;V~>kh
V(!b!i@
for n=1:nmax
QTn-n)AE
Dh +^;dQ6
% Update magnetic field
}.b[a z\T
bstore=bx;
s^KxAw_IV
bx(2:ie_tot,:,:)=D1hx(2:ie_tot,:,:).* bx(2:ie_tot,:,:)-...
Tu/JhP/g,`
D2hx(2:ie_tot,:,:).*((ez(2:ie_tot,2:jh_tot,:)-ez(2:ie_tot,1:je_tot,:))-...
U-n33ty`H
(ey(2:ie_tot,:,2:kh_tot)-ey(2:ie_tot,:,1:ke_tot)))./delta;
BTd'bD~EA
hx(2:ie_tot,:,:)= D3hx(2:ie_tot,:,:).*hx(2:ie_tot,:,:)+...
V">Uh@[J_
D4hx(2:ie_tot,:,:).*(D5hx(2:ie_tot,:,:).*bx(2:ie_tot,:,:)-...
(c[h,>`@:
D6hx(2:ie_tot,:,:).*bstore(2:ie_tot,:,:));
Y?%6af+
bstore=by;
3?5 ~KxOE(
by(:,2:je_tot,:)=D1hy(:,2:je_tot,:).* by(:,2:je_tot,:)-...
Ha+FH8rZ
D2hy(:,2:je_tot,:).*((ex(:,2:je_tot,2:kh_tot)-ex(:,2:je_tot,1:ke_tot))-...
^jmnE.8R
(ez(2:ih_tot,2:je_tot,:)-ez(1:ie_tot,2:je_tot,:)))./delta;
? ! 1uw
hy(:,2:je_tot,:)= D3hy(:,2:je_tot,:).*hy(:,2:je_tot,:)+...
3&?Tc|F+
D4hy(:,2:je_tot,:).*(D5hy(:,2:je_tot,:).*by(:,2:je_tot,:)-...
B-&J]H
D6hy(:,2:je_tot,:).*bstore(:,2:je_tot,:));
:sPku<1is
bstore=bz;
nM0nQ{6
bz(:,:,2:ke_tot)=D1hz(:,:,2:ke_tot).* bz(:,:,2:ke_tot)-...
RXWjFv~/
D2hz(:,:,2:ke_tot).*((ey(2:ih_tot,:,2:ke_tot)-ey(1:ie_tot,:,2:ke_tot))-...
]7u8m[@
(ex(:,2:jh_tot,2:ke_tot)-ex(:,1:je_tot,2:ke_tot)))./delta;
g:o\ r (
hz(:,:,2:ke_tot)= D3hz(:,:,2:ke_tot).*hz(:,:,2:ke_tot)+...
Aoo'i
D4hz(:,:,2:ke_tot).*(D5hz(:,:,2:ke_tot).*bz(:,:,2:ke_tot)-...
jZ{S{"j
D6hz(:,:,2:ke_tot).*bstore(:,:,2:ke_tot));
ReK@~#hLY
s~]nsqLt9p
% Update electric field
^c(PZ,/#JB
dstore=dx;
R<U?)8g,h~
dx(:,2:je_tot,2:ke_tot)=C1ex(:,2:je_tot,2:ke_tot).* dx(:,2:je_tot,2:ke_tot)+...
'Yd%Tb|*
C2ex(:,2:je_tot,2:ke_tot).*((hz(:,2:je_tot,2:ke_tot)-hz(:,1:je_tot-1,2:ke_tot))-...
/p%K[)T(
(hy(:,2:je_tot,2:ke_tot)-hy(:,2:je_tot,1:ke_tot-1)))./delta;
G8;S`-D1a,
ex(:,2:je_tot,2:ke_tot)=C3ex(:,2:je_tot,2:ke_tot).*ex(:,2:je_tot,2:ke_tot)+...
"rKIXy
C4ex(:,2:je_tot,2:ke_tot).*(C5ex(:,2:je_tot,2:ke_tot).*dx(:,2:je_tot,2:ke_tot)-...
%*19S.=l
C6ex(:,2:je_tot,2:ke_tot).*dstore(:,2:je_tot,2:ke_tot));
+p cj8K%
dstore=dy;
AV2q*
dy(2:ie_tot,:,2:ke_tot)=C1ey(2:ie_tot,:,2:ke_tot).* dy(2:ie_tot,:,2:ke_tot)+...
?&GMp[
C2ey(2:ie_tot,:,2:ke_tot).*((hx(2:ie_tot,:,2:ke_tot)-hx(2:ie_tot,:,1:ke_tot-1))-...
1I@4xC #X
(hz(2:ie_tot,:,2:ke_tot)-hz(1:ie_tot-1,:,2:ke_tot)))./delta;
%#]T.g
ey(2:ie_tot,:,2:ke_tot)=C3ey(2:ie_tot,:,2:ke_tot).*ey(2:ie_tot,:,2:ke_tot)+...
x#YOz7.
C4ey(2:ie_tot,:,2:ke_tot).*(C5ey(2:ie_tot,:,2:ke_tot).*dy(2:ie_tot,:,2:ke_tot)-...
[{ { ?e6J
C6ey(2:ie_tot,:,2:ke_tot).*dstore(2:ie_tot,:,2:ke_tot));
)>Lsj1qk
dstore=dz;
l =_@<p
dz(2:ie_tot,2:je_tot,:)=C1ez(2:ie_tot,2:je_tot,:).* dz(2:ie_tot,2:je_tot,:)+...
TAAsV#l
C2ez(2:ie_tot,2:je_tot,:).*((hy(2:ie_tot,2:je_tot,:)-hy(1:ie_tot-1,2:je_tot,:))-...
~<Lf@yu-{
& ..
O?2<rbx
\YKh'|04
未注册仅能浏览
部分内容
,查看
全部内容及附件
请先
登录
或
注册
共
条评分
发帖
回复