UID :2875
UID :38778
vip_dong:1. 我也相信A-solver的精度是CST算法中最低的,但对于反射面天线,只能用它来算(小一点的可能可以勉强用I-solver)。所以我觉得“Despite its limitations, it may often be the first choice for electrically very large problems which are difficult to handle by using any other simulation technique. ”这句英文更多地应该是在“褒奖”A-solver算法的:“尽管它不是全波算法,但是他是处理电大尺寸的不二选择”。纯光学算法GO已经得到了很广泛的认可,SBR从理论上讲,比GO多算了一下金属表面的感应电流,它应该更“物理”些,也更准确些。但CST公司把这个SBR算法写的如何,就不太清楚了,help文件也没什么介绍; T/ ECW 2. 我对小反射面天线用I-solver和A-solver进行过对比,结果接近的很,主波束增益差别小于0.2dB,在非常远的远旁瓣的某处地方I-solver可能会略高2~5dB,这应该是因为SBR算法无法考虑阴影场、绕射场所引起的,所以A-solver在对远场旁瓣、天线可能存在的缝隙结构上(比如网格状的反射面天线)的计算上存在一定的不准确; o*A, 6y [图片] 5{(4% 3. 不太清楚你说的看不到旁后瓣是什么意思,反射面天线当然不存在较强的旁后瓣,其主瓣极其尖锐。如果你说的是从3D方向图上看不清旁后瓣而只有主瓣,可能是你的动态范围设置太小了,你那么大的天线我觉得应该设置个70dB的动态范围; Wi=zu[[qc ....... K3\a~_0
图片:1.JPG
zhknpu:您的观点有一点我不太同意,应该说SBR方法和PO方法都是GO算法的增强。SBR法将GO方法中的射线循迹用相互独立的射线管(Ray tubes)进行了简化,引入基于射线密度归一化(RDN)概念。SBR法更多的是研究多次射线寻迹方法,它与PO还是有所不同。PO法没有考虑多次作用或者边缘衍射,SBR .. (2013-01-08 21:08) odcrP\S
UID :20722
UID :103503
zhknpu:技术支持的回复如下: g?^o++ SBR is an asymptotic High Frequency method which employs ray concepts to describe EM wave propagation mechanisms. It uses a ray-tracing approach to calculate multiple scattering interactions. The ray concepts used are: Fermat’s principle .. (2013-01-10 17:39) aMZ6C <N
UID :83686
UID :71388
UID :103948
UID :53660