登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
时域有限差分法 FDTD
>
菜鸟求助,PML边界问题
发帖
回复
1006
阅读
2
回复
[
求助
]
菜鸟求助,PML边界问题
离线
jillar
UID :55262
注册:
2010-03-21
登录:
2011-11-27
发帖:
6
等级:
旁观者
0楼
发表于: 2010-03-21 19:26:52
我在做一个光学电磁波仿真,并没有学过电磁场,找到一个matlab写的计算TE波的程序,现在想算TM,但是对着书研究了几天也没明白PML这块怎么回事,555
uXQ7eXX
我只想用一下,并不想了解细节,请问这个程序有TM波的版本吗?或者哪位仁兄知道怎么修改吗???万分感谢了!!!
^p"4)6p-W
h\=p=M
3{Ek-{9
%***********************************************************************
xH"W}-#[
% 2-D FDTD TE code with PML absorbing boundary conditions
84p[N8
%***********************************************************************
iM?I /\
%
}RA3$%3
% Program author: Susan C. Hagness
N&I8nZ9
% Department of Electrical and Computer Engineering
{{.sEi*
% University of Wisconsin-Madison
O^X[9vrW
% 1415 Engineering Drive
KH2F#[ !Lw
% Madison, WI 53706-1691
Et}C`vZ+Ve
% 608-265-5739
R0Ax$Cv{
%
hagness@engr.wisc.edu
:7$\X[
%
.7pGx*WH^Y
% Date of this version: February 2000
t,=@hs hN
%
;.nP%jD
% This MATLAB M-file implements the finite-difference time-domain
V@#*``M,3
% solution of Maxwell's curl equations over a two-dimensional
5vs`uUzr
% Cartesian space lattice comprised of uniform square grid cells.
*xX(!t'
%
*Z]5!$UpC
% To illustrate the algorithm, a 6-cm-diameter metal cylindrical
z"6ZDC6
% scatterer in free space is modeled. The source excitation is
+}c|O+6g
% a Gaussian pulse with a carrier frequency of 5 GHz.
W>`g;[ W
%
bmj8WZ
% The grid resolution (dx = 3 mm) was chosen to provide 20 samples
P"R97#C
% per wavelength at the center frequency of the pulse (which in turn
Ad]<e?oN=
% provides approximately 10 samples per wavelength at the high end
Z:_m}Ya|
% of the excitation spectrum, around 10 GHz).
Gd30Be2gd
%
(30<oE{
% The computational domain is truncated using the perfectly matched
;Cr_NP[8|j
% layer (PML) absorbing boundary conditions. The formulation used
3x"@**(Q
% in this code is based on the original split-field Berenger PML. The
%aj7-K6:t
% PML regions are labeled as shown in the following diagram:
W{fULl
% y
zG-_!FIn
% ----------------------------------------------
).0V%}>
% | | BACK PML | |
-+3be(u
% ----------------------------------------------
E8T"{ R80
% |L | /| R|
(orrX Ez
% |E | (ib,jb) | I|
5,HCeN
% |F | | G|
Sni&?tcY
% |T | | H|
zW"~YaO%C
% | | MAIN GRID | T|
~In{lQ[QX
% |P | | |
2 ) TG
% |M | | P|
=cf{f]N
% |L | (1,1) | M|
do:QH.q8)
% | |/ | L|
OW+ e_im}
% ----------------------------------------------
GXOFk7>
% | | FRONT PML | |
4R&*&GZ#
% ---------------------------------------------- x
*Rz{44LP&
%
O" %Hprx
% To execute this M-file, type "fdtd2D" at the MATLAB prompt.
tWpl`HH
% This M-file displays the FDTD-computed Ex, Ey, and Hz fields at
N<KKY"?I'
% every 4th time step, and records those frames in a movie matrix,
KY4d+~2
% M, which is played at the end of the simulation using the "movie"
o"'iXUJ
% command.
cT/3yf
%
8ivRp<9
%***********************************************************************
$.oOG"u0]
clear
&mh Ln4^
%***********************************************************************
y#b;uDY
% Fundamental constants
)8pcf`h{
%***********************************************************************
P['X<Xt8
cc=2.99792458e8; %speed of light in free space
G_V.H\w
muz=4.0*pi*1.0e-7; %permeability of free space
KqN!?anPr
epsz=1.0/(cc*cc*muz); %permittivity of free space
LQh^; ]^(
freq=5.0e+9; %center frequency of source excitation
(bg}an
lambda=cc/freq; %center wavelength of source excitation
jA4PDH f+
omega=2.0*pi*freq;
-'80>[}q/
%***********************************************************************
25x cD1*
% Grid parameters
jg~_'4f#
%***********************************************************************
kx|me~I
ie=100; %number of grid cells in x-direction
Y3-]+y%l
je=50; %number of grid cells in y-direction
:fxWz%t
ib=ie+1;
HzP.aw4
jb=je+1;
Z:I*y7V-
is=15; %location of z-directed hard source
}Q/G &F
js=je/2; %location of z-directed hard source
:&Qb>PH[
dx=3.0e-3; %space increment of square lattice
^Vag1(hdq
dt=dx/(2.0*cc); %time step
sS C?io
nmax=300; %total number of time steps
|WB"=PE
iebc=8; %thickness of left and right PML region
$GQphXb$
jebc=8; %thickness of front and back PML region
FQ+8J 7
rmax=0.00001;
qovQ9O
orderbc=2; %二阶边界条件???
VVs{l\$=ZV
ibbc=iebc+1;
HDyQzCG,
jbbc=jebc+1;
fucUwf\_
iefbc=ie+2*iebc;
{UP'tXah
jefbc=je+2*jebc;
<e'P%tG'
ibfbc=iefbc+1;
fk+1# 7{
jbfbc=jefbc+1;
FI\IY R
%***********************************************************************
D^|jZOJ
% Material parameters
Uf# PoQ!y
%***********************************************************************
F vj{@B!
media=2;
Y;8 >=0ye
eps=[1.0 1.0];
LRWOBD
sig=[0.0 1.0e+7];
O4T'o.
mur=[1.0 1.0];
Q`N18I3
sim=[0.0 0.0];
ir]Mn.(Y
%***********************************************************************
llNXQlP\B
% Wave excitation
aIQOs
%***********************************************************************
|-|jf
rtau=160.0e-12;
G]b8]3^
tau=rtau/dt;
rxQ<4
delay=3*tau;
*yrnK3
source=zeros(1,nmax);
M /"gf;)q>
for n=1:7.0*tau
. =&Jo9
source(n)=sin(omega*(n-delay)*dt)*exp(-((n-delay)^2/tau^2));
*]5z^> q;7
end
_Aa[?2 O
%***********************************************************************
xFOBF")
% Field arrays
Hfke
%***********************************************************************
])C>\@c6Gm
ex=zeros(ie,jb); %fields in main grid
USprsaj
ey=zeros(ib,je);
G OpjRA@
hz=zeros(ie,je);
m)r]F#@/
exbcf=zeros(iefbc,jebc); %fields in front PML region
@\ }sb]
eybcf=zeros(ibfbc,jebc);
LaDY`u0G%
hzxbcf=zeros(iefbc,jebc);
T$u~E1
hzybcf=zeros(iefbc,jebc);
|Td_S|:d
exbcb=zeros(iefbc,jbbc); %fields in back PML region
Y =9j2 ]t
eybcb=zeros(ibfbc,jebc);
3:UA<&=s
hzxbcb=zeros(iefbc,jebc);
<_t5:3HL
hzybcb=zeros(iefbc,jebc);
|B eA==
exbcl=zeros(iebc,jb); %fields in left PML region
sD2 ^_w6j
eybcl=zeros(iebc,je);
5lO^;.cS,
hzxbcl=zeros(iebc,je);
N3ZiGD
hzybcl=zeros(iebc,je);
T:U4:"
exbcr=zeros(iebc,jb); %fields in right PML region
l1}R2lSEO
eybcr=zeros(ibbc,je);
.vK.XFZ8R
hzxbcr=zeros(iebc,je);
K<#-"Xe;
hzybcr=zeros(iebc,je);
sv' Gt1&"Z
%***********************************************************************
58J_ w X
% Updating coefficients
yOc|*O=]U
%***********************************************************************
eO'xkm
for i=1:media
b7!UZu]IEv
eaf =dt*sig(i)/(2.0*epsz*eps(i));
y5_XHi@u~o
ca(i)=(1.0-eaf)/(1.0+eaf);
b{BaQ>.(`
cb(i)=dt/epsz/eps(i)/dx/(1.0+eaf);
` VwN!B:
haf =dt*sim(i)/(2.0*muz*mur(i));
vb %T7
da(i)=(1.0-haf)/(1.0+haf);
b"t")U==
db(i)=dt/muz/mur(i)/dx/(1.0+haf);
FRgLlp8x
end
Wk}D]o0^@
%***********************************************************************
r sLc&2F
% Geometry specification (main grid)
%]#VdS|N
%***********************************************************************
EX4 C.C|d
% Initialize entire main grid to free space
847 R
caex(1:ie,1:jb)=ca(1);
E3f9<hm
cbex(1:ie,1:jb)=cb(1);
K@6`-|I
caey(1:ib,1:je)=ca(1);
*qG$19b
cbey(1:ib,1:je)=cb(1);
"c,!vc4
dahz(1:ie,1:je)=da(1);
Y#`Lcg+r,
dbhz(1:ie,1:je)=db(1);
WO@H*
% Add metal cylinder
~5ubh2{
diam=20; % diameter of cylinder: 6 cm
ywEDy|Wn$~
rad=diam/2.0; % radius of cylinder: 3 cm
|YRY!V_w
icenter=4*ie/5; % i-coordinate of cylinder's center
l DnMjK\M
jcenter=je/2; % j-coordinate of cylinder's center
D M}s0O$0
for i=1:ie
7 W{~f?Sh
for j=1:je
{ V0>iN:~S
dist2=(i+0.5-icenter)^2 + (j-jcenter)^2;
PPj[;(A
if dist2 <= rad^2
UQ~4c,
caex(i,j)=ca(2);
7WP%J-
cbex(i,j)=cb(2);
XCm\z9F
end
H UkerV
dist2=(i-icenter)^2 + (j+0.5-jcenter)^2;
6b<+8w
if dist2 <= rad^2
p qeL%="p;
caey(i,j)=ca(2);
V!xwb:J
cbey(i,j)=cb(2);
q3)wr%!k5D
end
ESIzGaM
end
gQ>2!Qc a-
end
0I @$ 0Gg
%***********************************************************************
<BPRV> 0X
% Fill the PML regions
H} 6CKP}
%***********************************************************************
qOi5WX6F/
delbc=iebc*dx;
uB;_vC
sigmam=-log(rmax/100.0)*epsz*cc*(orderbc+1)/(2*delbc);
]^ #`j
bcfactor=eps(1)*sigmam/(dx*(delbc^orderbc)*(orderbc+1));
sMm/4AY]
% FRONT region
E=kw)<X2
caexbcf(1:iefbc,1)=1.0;
ib]vX-
cbexbcf(1:iefbc,1)=0.0;
t:=k)B
for j=2:jebc
Q&PB]D{
y1=(jebc-j+1.5)*dx;
d=y0yq{L
y2=(jebc-j+0.5)*dx;
?+Q$#pb
sigmay=bcfactor*(y1^(orderbc+1)-y2^(orderbc+1));
thptm
ca1=exp(-sigmay*dt/(epsz*eps(1)));
_88QgThb
cb1=(1.0-ca1)/(sigmay*dx);
Gqt-_gga
caexbcf(1:iefbc,j)=ca1;
.LObOR5J7
cbexbcf(1:iefbc,j)=cb1;
\?&Au
end
qg4fR' i
sigmay = bcfactor*(0.5*dx)^(orderbc+1);
bDWeU}
ca1=exp(-sigmay*dt/(epsz*eps(1)));
W' ep6O
cb1=(1-ca1)/(sigmay*dx);
"yW&<7u1
caex(1:ie,1)=ca1;
o%`npi1y
cbex(1:ie,1)=cb1;
HIGNRm
caexbcl(1:iebc,1)=ca1;
vbp-`M(
cbexbcl(1:iebc,1)=cb1;
9 mPIykAj8
caexbcr(1:iebc,1)=ca1;
E/mw* c^
cbexbcr(1:iebc,1)=cb1;
ej52AK7
for j=1:jebc
%b=p< h'(
y1=(jebc-j+1)*dx;
c#QFG1
y2=(jebc-j)*dx;
)* TF"
sigmay=bcfactor*(y1^(orderbc+1)-y2^(orderbc+1));
N_G4_12(
sigmays=sigmay*(muz/(epsz*eps(1)));
Me/\z^pF
da1=exp(-sigmays*dt/muz);
DjwQ`MA
db1=(1-da1)/(sigmays*dx);
sofu
dahzybcf(1:iefbc,j)=da1;
-72j:nk
dbhzybcf(1:iefbc,j)=db1;
rN"Xz
caeybcf(1:ibfbc,j)=ca(1);
x2k*|=$
cbeybcf(1:ibfbc,j)=cb(1);
*d>vR1
dahzxbcf(1:iefbc,j)=da(1);
Z>2]Xx% \
dbhzxbcf(1:iefbc,j)=db(1);
K%gP5>y*9>
end
MCU9O
%**************************************************************************
.oR3Q/|k]
%
O R #7"
% BACK region
T4r5s
caexbcb(1:iefbc,jbbc)=1.0;
c@(1:,R
cbexbcb(1:iefbc,jbbc)=0.0;
C),7- ?
for j=2:jebc
#*2Rp8n
y1=(j-0.5)*dx;
sx5r(0Z
y2=(j-1.5)*dx;
w<t,j~ Pr#
sigmay=bcfactor*(y1^(orderbc+1)-y2^(orderbc+1));
kXwi{P3D$
ca1=exp(-sigmay*dt/(epsz*eps(1)));
`c(\i$1JY)
cb1=(1-ca1)/(sigmay*dx);
=IHje;s
caexbcb(1:iefbc,j)=ca1;
-=)-s m'
cbexbcb(1:iefbc,j)=cb1;
3wC R|ab}
end
JMlV@t7y<
sigmay = bcfactor*(0.5*dx)^(orderbc+1);
\zu}\{
ca1=exp(-sigmay*dt/(epsz*eps(1)));
<'&F;5F3V
cb1=(1-ca1)/(sigmay*dx);
Z^#]#f
caex(1:ie,jb)=ca1;
6peyh_
cbex(1:ie,jb)=cb1;
R#qI(V
caexbcl(1:iebc,jb)=ca1;
QaQ'OrP
cbexbcl(1:iebc,jb)=cb1;
Oq+E6"<y;?
caexbcr(1:iebc,jb)=ca1;
mW4%2fD[
cbexbcr(1:iebc,jb)=cb1;
<m-.aK{9
for j=1:jebc
Y"!uU.=xJ
y1=j*dx;
=g~j=v,e
y2=(j-1)*dx;
XmWlv{T+
sigmay=bcfactor*(y1^(orderbc+1)-y2^(orderbc+1));
>F3.c%VU]w
sigmays=sigmay*(muz/(epsz*eps(1)));
</s,pe79B
da1=exp(-sigmays*dt/muz);
`#6x=24
db1=(1-da1)/(sigmays*dx);
)a cV-+{
dahzybcb(1:iefbc,j)=da1;
S LGW:
dbhzybcb(1:iefbc,j)=db1;
/IR#A%U
caeybcb(1:ibfbc,j)=ca(1);
*)> do L
cbeybcb(1:ibfbc,j)=cb(1);
G{RTH_p
dahzxbcb(1:iefbc,j)=da(1);
M"U OgS
dbhzxbcb(1:iefbc,j)=db(1);
4:1)~z
end
2dbRE:v5
% LEFT region
.Yx_:h=u
caeybcl(1,1:je)=1.0;
^$Krub{|
cbeybcl(1,1:je)=0.0;
?QpNjsF
for i=2:iebc
Z]vL%Gg*!
x1=(iebc-i+1.5)*dx;
@6&JR<g*t
x2=(iebc-i+0.5)*dx;
]sj0~DI*m
sigmax=bcfactor*(x1^(orderbc+1)-x2^(orderbc+1));
gyu6YD8L
ca1=exp(-sigmax*dt/(epsz*eps(1)));
^od<JD4
cb1=(1-ca1)/(sigmax*dx);
sLns3&n2
caeybcl(i,1:je)=ca1;
%8FN0
cbeybcl(i,1:je)=cb1;
nl n OwyMJ
caeybcf(i,1:jebc)=ca1;
8S U%
cbeybcf(i,1:jebc)=cb1;
`;F2n2@
caeybcb(i,1:jebc)=ca1;
E4HU 'y~
cbeybcb(i,1:jebc)=cb1;
c2<,|D|
end
"!Lkp2\
sigmax=bcfactor*(0.5*dx)^(orderbc+1);
ue0s&WF|
ca1=exp(-sigmax*dt/(epsz*eps(1)));
&5Y_>{,
cb1=(1-ca1)/(sigmax*dx);
H+l,)Se
caey(1,1:je)=ca1;
?)i1b\4Go
cbey(1,1:je)=cb1;
-9o{vmB{
caeybcf(iebc+1,1:jebc)=ca1;
u~F~cDu
cbeybcf(iebc+1,1:jebc)=cb1;
s@!$='|
caeybcb(iebc+1,1:jebc)=ca1;
u) *Kws
cbeybcb(iebc+1,1:jebc)=cb1;
P5?<_x0v4b
for i=1:iebc
@Zm Jz
x1=(iebc-i+1)*dx;
;>ozEh#8w
x2=(iebc-i)*dx;
!wh&>3~
sigmax=bcfactor*(x1^(orderbc+1)-x2^(orderbc+1));
x(~<