登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
时域有限差分法 FDTD
>
附葛德彪书后程序,新手交流!
发帖
回复
1
2
3
4
6171
阅读
36
回复
[
资料共享
]
附葛德彪书后程序,新手交流!
离线
yuanxiaoain
UID :84183
注册:
2011-10-17
登录:
2012-05-16
发帖:
19
等级:
仿真新人
30楼
发表于: 2011-11-15 10:08:36
运行成功的意思是?画的图也是对的吗?貌似程序里还有点问题啊
共
条评分
离线
前进进
UID :89317
注册:
2012-02-28
登录:
2012-07-14
发帖:
26
等级:
仿真新人
31楼
发表于: 2012-06-27 16:23:25
老是出现错误怎么回事错误 254 Compilation Aborted (code 1)
共
条评分
离线
鑫博2012
UID :98571
注册:
2012-08-27
登录:
2015-03-09
发帖:
311
等级:
仿真三级
32楼
发表于: 2013-01-24 13:11:23
谢谢了,偶也是新手
共
条评分
离线
cdgzs
Don't worry,be happy!!
UID :93906
注册:
2012-05-14
登录:
2025-06-28
发帖:
365
等级:
仿真三级
33楼
发表于: 2013-04-11 10:27:00
看看,学习下。。
共
条评分
Suo des ne!!
离线
jisuandcx
UID :93808
注册:
2012-05-12
登录:
2022-06-25
发帖:
20
等级:
仿真新人
34楼
发表于: 2013-05-14 15:35:57
感谢您的资料
共
条评分
离线
chenhanbo
UID :108940
注册:
2013-06-10
登录:
2013-06-10
发帖:
3
等级:
旁观者
35楼
发表于: 2013-06-10 22:21:37
我下载不了 可以发一个给我嘛?
563179536@qq.com
谢谢了
共
条评分
离线
阁楼者988
UID :96594
注册:
2012-07-06
登录:
2014-04-02
发帖:
77
等级:
仿真一级
36楼
发表于: 2013-06-18 17:10:19
for index = 0:20
$A2n{
P0 = index/20;
l30Y8t~d
P1 = 1 - index/20; %计算发送1的先验概率P1
!R'g59g
T = [1.55 1.5 1.65]; %初始化3个传感器的判决门限
${I*nh>=
%%%计算贝叶斯风险表达式中的相关常量%%%
H4:&%"j7
C = P0*cost_fac(1,1) + P1*cost_fac(2,1);
c6&Q^p|CF
C_F = P0*(cost_fac(1,2) - cost_fac(1,1));
thc <xxRP
C_D = P1*(cost_fac(2,1) - cost_fac(2,2));
=Mj0:rW
old_RB = 0;
r^0F"9eOL
whileindex = 0;
yVX8e I
%%%求解贝叶斯风险值%%%
WBr59@V
while (1)
D`[Khs f
whileindex = whileindex + 1;
]y#3@
P = zeros(3,2,2);
aUc|V{Jp
for i = 1:3
~g6 3qs
%%% P(i,j,k)表示,对于第i个传感器,发送k-1,而判决为j-1的概率。%%%
(UL4+ta
P(i,2,1) = qfunc(T(i)/sigma(i)); %计算第i个传感器的虚警概率Pf
3BG>Y(v
P(i,1,2) = 1 - qfunc((T(i)-Value(i))/sigma(i));
DF_X
%计算第i个传感器的漏报概率Pm
t$J.+} }I
P(i,1,1) = 1 - P(i,2,1); %计算第i个传感器的概率1-Pf
6*45Vf
P(i,2,2) = 1 - P(i,1,2); %计算第i个传感器的检测概率Pd
OhVs#^
end
=-"c*^$]
]fBUT6
% 计算融合中心的P(u|H1)
W/fuKGZi_
Pu_h1 = zeros(2,2,2);
Qkcjr]#^$
for i = 1:2
_%/}>L>-`8
for j = 1:2
j$Ab>}g]
for k = 1:2
wSEWwU[
Pu_h1(i,j,k) = P(1,i,2)*P(2,j,2)*P(3,k,2);
cl@g
end
j8Cho5C
end
^7^N}x@
end
k*?I>%^6#T
-0Cnp/Yj@
% 计算融合中心的P(u|H0)
K/L;8a
Pu_h0 = zeros(2,2,2);
:e<7d8E5n{
for i = 1:2
Ts.wh>`
for j = 1:2
{pL+2%`~
for k = 1:2
h6~$/`&]b
Pu_h0(i,j,k) = P(1,i,1)*P(2,j,1)*P(3,k,1);
1oiRW Re
end
'Gl&Pa1g?
end
l+*&:Q/
end
58 bCUh#uw
&V7M}@
% 计算融合中心的P(u0=1|u)%
I_1e?\
Pu0_1_u = zeros(2,2,2);
A\fb<
for i = 1:2
i,IB!x
for j = 1:2
FAsFjRS
for k = 1:2
b2,!g }I
judge = C_F*Pu_h0(i,j,k) - C_D*Pu_h1(i,j,k);
- e"jw#B
if(judge < 0)
Djq!P
Pu0_1_u(i,j,k) = 1;
3]RyTQ
else
q_kdCO{:df
Pu0_1_u(i,j,k) = 0;
zZ=pP5y8
end
X]%itA
end
Lfog {Vzs
end
8NBT|N~N
end
F@ Swe
2ZcKK8X;7
% 计算融合中心的贝叶斯风险
bi[IqU!9
RB = C;
y5r4+2B
for i = 1:2
vi.w8>CE
for j = 1:2
>J9oH=S6
for k = 1:2
I,yC D7l_
RB = RB + Pu0_1_u(i,j,k)*(C_F*Pu_h0(i,j,k)-C_D*Pu_h1(i,j,k));
iOAbaPN
end
/D!;u]
end
nKa$1RMO
end
+{<#(}
+N`ua
% 计算A_ui
#@HF<'H}mu
for i = 1:2
z2_6??tS/c
for j = 1:2
EU7|,>a
A_u1(i,j) = Pu0_1_u(2,i,j) - Pu0_1_u(1,i,j);
km~Ll
end
-m *Sq
end
':{>a28=
for i = 1:2
>P6BW
for j = 1:2
Ae]sGU|?'
A_u2(i,j) = Pu0_1_u(i,2,j) - Pu0_1_u(i,1,j);
VTy9_~q
end
zk-.u}RBFG
end
kF(n!2"W
for i = 1:2
7lV.[&aKW
for j = 1:2
1#IlWEg
A_u3(i,j) = Pu0_1_u(i,j,2) - Pu0_1_u(i,j,1);
AIMSX]m
end
-Eu6U`"(
end
Ar*^;/
>zAUW[]C:I
% 计算P(ui|h0)
tW WWx~k
for i = 1:2
mKrh[nA
for j = 1:2
wLc4Dm*V
P_u1_h0(i,j) = P(2,i,1)*P(3,j,1);
CI353-`
end
*g?Po+ef%
end
0}!\$"|D
for i = 1:2
o1M$.*
for j = 1:2
wLK07e(
P_u2_h0(i,j) = P(1,i,1)*P(3,j,1);
"&/-N[is
end
;AO#xv+#
end
P3$Q&^?
for i = 1:2
~ab:/!Z
for j = 1:2
[8tL"G6s
P_u3_h0(i,j) = P(1,i,1)*P(2,j,1);
hxQqa 0B
end
Z}$TKO*u
end
!;?+>R)h
% 计算P(ui|h1)
[sB 9gY(
for i = 1:2
C8 \5A8c
for j = 1:2
VD_$$Gn*q
P_u1_h1(i,j) = P(2,i,2)*P(3,j,2);
okbQ<{9
end
|$?bc3
end
{~Rk2:gx
for i = 1:2
O T.*pk+<)
for j = 1:2
_S>JKz
P_u2_h1(i,j) = P(1,i,2)*P(3,j,2);
93Co}@Y;Y+
end
/c uLc^(X
end
+$g}4
for i = 1:2
[Xb@Wh:yG
for j = 1:2
qkiI/nH3
P_u3_h1(i,j) = P(1,i,2)*P(2,j,2);
ZK>WW
end
BD(Z5+EU1
end
>=[(^l
%%%计算新门限值T %%%
uEX!xx?Q#
numerator = zeros(1,3);
ty8v 6J#
denominator = zeros(1,3);
|PC*=ykT3
for i = 1:2
j~!X;PV3
for j = 1:2
%Dwk
%% 计算第1个传感器新门限值分子与分母的求和部分
` @nl
numerator(1) = numerator(1) + A_u1(i,j)*P_u1_h0(i,j);
YW7b)uYf
denominator(1) = denominator(1) + A_u1(i,j)*P_u1_h1(i,j);
tQS5hwm*
end
@Y1s$,=xB
end
/`mks1:pK
for i = 1:2
z11O F
for j = 1:2
I:mr}mv=i
%% 计算第2个传感器新门限值分子与分母的求和部分
?Y@N`S
numerator(2) = numerator(2) + A_u2(i,j)*P_u2_h0(i,j);
\[y`'OD~
denominator(2) = denominator(2) + A_u2(i,j)*P_u2_h1(i,j);
6I%5Q4Ll
end
gLOEh6
end
l<A|d{" ]
for i = 1:2
hEp(A8g)bQ
for j = 1:2
D8$G `~hD
numerator(3) = numerator(3) + A_u3(i,j)*P_u3_h0(i,j);
'FDef#P<
denominator(3) = denominator(3) + A_u3(i,j)*P_u3_h1(i,j);
rk #sy$
end
G K7![p
end
{WYX~Mvvj
if(denominator(1) == 0)
_H5o'>=
break;
zG(\+4GE!
end
S:OO0<W
if(denominator(2) == 0)
9jw\s P@
break;
H '
end
DAXX;4
if(denominator(3) == 0)
/Njd[=B
break;
$m/)FnU/
end
3.*8)NW
for i = 1:3
Q\ 0cvmU
T(i) = C_F*numerator(i) / (C_D*denominator(i));
u fw ]=h)
end
abyo4i5T
if(abs(RB-old_RB) < epsilon)
zx)z/1
break;
!O<)\)|g
else
INJEsz
old_RB = RB;
!qWH`[:
end
~{jcH
if(whileindex == 20)
x^y'P<ypw
break;
"thdPZ
end
c-(UhN3WG
NfjE`
end
sVOyT*GY
result(index+1) = RB;
(jAg_$6
end
|'B7v i)
% 第三步 画贝叶斯风险值随先验概率P0变化曲线
^zQ/mo,Z
x = 0:0.05:1;
Z'.AA OG
plot(x,result,'r');
:51/29}
title('贝叶斯风险值-先验概率P0曲线');
njputEGX
xlabel('先验概率P0');
R}!:'^
ylabel('贝叶斯风险值');
fTK3,s1=
for index = 0:20
-w"VK|SGm
P0 = index/20;
2Eu`u!jhx
P1 = 1 - index/20; %计算发送1的先验概率P1
++`0rY%
T = [1.55 1.5 1.65]; %初始化3个传感器的判决门限
e]zBf;9J
%%%计算贝叶斯风险表达式中的相关常量%%%
=`H@%
C = P0*cost_fac(1,1) + P1*cost_fac(2,1);
Zg{KFM%
C_F = P0*(cost_fac(1,2) - cost_fac(1,1));
.oeX"6K
C_D = P1*(cost_fac(2,1) - cost_fac(2,2));
oU.R2\Q
old_RB = 0;
w|K'M?N14
whileindex = 0;
oY H^_V
%%%求解贝叶斯风险值%%%
NgP&.39U
while (1)
pC@{DW;V6R
whileindex = whileindex + 1;
{#@W)4)cA
P = zeros(3,2,2);
A;]}m8(*
for i = 1:3
*^VRGfpb
%%% P(i,j,k)表示,对于第i个传感器,发送k-1,而判决为j-1的概率。%%%
nH[yJGZYSA
P(i,2,1) = qfunc(T(i)/sigma(i)); %计算第i个传感器的虚警概率Pf
+l<5#pazx
P(i,1,2) = 1 - qfunc((T(i)-Value(i))/sigma(i));
Na]:_K5Dp
%计算第i个传感器的漏报概率Pm
^LoUi1j
P(i,1,1) = 1 - P(i,2,1); %计算第i个传感器的概率1-Pf
+[\FD; >
P(i,2,2) = 1 - P(i,1,2); %计算第i个传感器的检测概率Pd
v0H@Eg_
end
"W955?4m
#ML%ij 1
% 计算融合中心的P(u|H1)
D$I5z.a
Pu_h1 = zeros(2,2,2);
w=T\3(%j
for i = 1:2
%z,mB$LY
for j = 1:2
klT@cO-9
for k = 1:2
/} b03
Pu_h1(i,j,k) = P(1,i,2)*P(2,j,2)*P(3,k,2);
GLeK'0Q@
end
pL/DZ|S3
end
*V8<:OG|e
end
KUlp"{a`,K
>I-RGW'A
% 计算融合中心的P(u|H0)
j i7[nY
Pu_h0 = zeros(2,2,2);
0dE@c./R i
for i = 1:2
of%Ktm5Qi
for j = 1:2
a%/9v"}
for k = 1:2
Y[}>CYO
Pu_h0(i,j,k) = P(1,i,1)*P(2,j,1)*P(3,k,1);
T[UN@^DP(
end
Ch<[l8;K
end
\o*5
end
Oi8.8M
"K6&dk jY
% 计算融合中心的P(u0=1|u)%
vqDu(6!2
Pu0_1_u = zeros(2,2,2);
YIQ 4t
for i = 1:2
keL&b/@
for j = 1:2
A$Hfr8w1u
for k = 1:2
qNB<T('
judge = C_F*Pu_h0(i,j,k) - C_D*Pu_h1(i,j,k);
\`~Ly-
if(judge < 0)
1WxK#c-)
Pu0_1_u(i,j,k) = 1;
8]/bK5`
else
v3~? ;f,l
Pu0_1_u(i,j,k) = 0;
SB H(y)
end
W$hx,VEy`
end
1\ o59Y
end
Jh,]r?Bd
end
0zmE>/O+
96( v
% 计算融合中心的贝叶斯风险
r!_-"~`7E
RB = C;
tE<H|_{L
for i = 1:2
qr"3y
for j = 1:2
6t[+pL\b
for k = 1:2
zPn+V7F
RB = RB + Pu0_1_u(i,j,k)*(C_F*Pu_h0(i,j,k)-C_D*Pu_h1(i,j,k));
[+T.at
end
lb4Pcdj
end
Lo{ E:5q
end
` Mjj@[
iT3BF"ZqBO
% 计算A_ui
%[Wh [zZy
for i = 1:2
2_HNhW
for j = 1:2
ayR-\mZ
A_u1(i,j) = Pu0_1_u(2,i,j) - Pu0_1_u(1,i,j);
5F)C jQ
end
y" RF;KW>
end
riY~%9iV'
for i = 1:2
vdivq^%=a
for j = 1:2
`u3EU*~W
A_u2(i,j) = Pu0_1_u(i,2,j) - Pu0_1_u(i,1,j);
x<tb
end
KX ,S
end
IA8f*]?
for i = 1:2
`2("gUCm
for j = 1:2
Gp?a(-K5
A_u3(i,j) = Pu0_1_u(i,j,2) - Pu0_1_u(i,j,1);
<\rT%f}3^
end
?+@n3]`0
end
2=,lcWr
_S<3\%(0
% 计算P(ui|h0)
4gI/!,J(b
for i = 1:2
kCWV r
for j = 1:2
<wN}X#M
P_u1_h0(i,j) = P(2,i,1)*P(3,j,1);
]b2p G'
end
LG{,c.Qj*
end
ey7 f9
for i = 1:2
N.,X<G.H
for j = 1:2
c}lb%^;)E
P_u2_h0(i,j) = P(1,i,1)*P(3,j,1);
BO~0ON0
end
?~BC#B\>o
end
6Zm# bFQ
for i = 1:2
Elcj tYu4
for j = 1:2
kbX8$xTM
P_u3_h0(i,j) = P(1,i,1)*P(2,j,1);
yj 3cyLXw
end
X`kk]8=
end
)B"jF>9)[
% 计算P(ui|h1)
aH)}/n
for i = 1:2
KrgFKRgGj
for j = 1:2
Q{s H3Y#l
P_u1_h1(i,j) = P(2,i,2)*P(3,j,2);
deBY5|
end
,1~"eGl!
end
(y=C_wvqZ
for i = 1:2
V\ZG d+?
for j = 1:2
{f/~1G[M
P_u2_h1(i,j) = P(1,i,2)*P(3,j,2);
k9sh @ENy
end
>?2M }TV3
end
> kGGR
for i = 1:2
1gL2ia
for j = 1:2
"jeb%k
P_u3_h1(i,j) = P(1,i,2)*P(2,j,2);
!#], hok8X
end
dyz2.ZY~2
end
@Q)OGjaq
%%%计算新门限值T %%%
(9''MlGd%
numerator = zeros(1,3);
+ [iQLM?zo
denominator = zeros(1,3);
w1Nm&}V
for i = 1:2
2e+UM$
for j = 1:2
Si2k"<5U
%% 计算第1个传感器新门限值分子与分母的求和部分
pnl{&<$C%C
numerator(1) = numerator(1) + A_u1(i,j)*P_u1_h0(i,j);
! E<[JM
denominator(1) = denominator(1) + A_u1(i,j)*P_u1_h1(i,j);
9vuyv*-}e
end
GFj{K
end
n,vct<&z@
for i = 1:2
x|/|jzJSX
for j = 1:2
$O&b``
%% 计算第2个传感器新门限值分子与分母的求和部分
N({MPO9
numerator(2) = numerator(2) + A_u2(i,j)*P_u2_h0(i,j);
1OGx>J6
denominator(2) = denominator(2) + A_u2(i,j)*P_u2_h1(i,j);
c,np2myd
end
k3lS8d7
end
|HiE@
for i = 1:2
1{)5<!9! l
for j = 1:2
Q3kdlxXR
numerator(3) = numerator(3) + A_u3(i,j)*P_u3_h0(i,j);
{2O1"|s ,
denominator(3) = denominator(3) + A_u3(i,j)*P_u3_h1(i,j);
}MJy +Z8&
end
Ci@o|Y }tP
end
,?J!
if(denominator(1) == 0)
f',Op1o
break;
-^&<Z 0m
end
wcrCEX=I>{
if(denominator(2) == 0)
>8~.wXyoC
break;
*RI]?j%B
end
LC,F <>w1
if(denominator(3) == 0)
3+)J @(a
break;
? ^0:3$La
end
qzYwt]GNS
for i = 1:3
k|e7a2Wwt
T(i) = C_F*numerator(i) / (C_D*denominator(i));
h9t$Uz^N
end
VACQ+
if(abs(RB-old_RB) < epsilon)
H*d9l2,KZS
break;
.p<:II:6
else
`l\7+0W
old_RB = RB;
Kf bb)?
end
}~YA5^VQ$
if(whileindex == 20)
%|s; C
break;
j@n)kPo,1
end
[`ebM,W
1T"`vtR
end
)X1{
result(index+1) = RB;
Ot4 Z{mA
end
ef8s<5"4
% 第三步 画贝叶斯风险值随先验概率P0变化曲线
u0JB\)(-/h
x = 0:0.05:1;
4`4kfiS$
plot(x,result,'r');
A=$04<nP8!
title('贝叶斯风险值-先验概率P0曲线');
v"y-0$M
xlabel('先验概率P0');
P{8iJ`rBG
ylabel('贝叶斯风险值');
iFd+2S%
for index = 0:20
\{Y 7FC~
P0 = index/20;
LK{*sHi$
P1 = 1 - index/20; %计算发送1的先验概率P1
cq,S P&T~
T = [1.55 1.5 1.65]; %初始化3个传感器的判决门限
3atBX5
%%%计算贝叶斯风险表达式中的相关常量%%%
=2`[&
C = P0*cost_fac(1,1) + P1*cost_fac(2,1);
DwM)r7<Ex
C_F = P0*(cost_fac(1,2) - cost_fac(1,1));
:NhO2L
C_D = P1*(cost_fac(2,1) - cost_fac(2,2));
Zd3S:),&
old_RB = 0;
"IZa!eUW
whileindex = 0;
Gj1&tjK
%%%求解贝叶斯风险值%%%
ew>XrT=Zm
while (1)
]N~2 .h
whileindex = whileindex + 1;
RVZ")Z(
P = zeros(3,2,2);
h0(BO*cy
for i = 1:3
3U<cWl@
%%% P(i,j,k)表示,对于第i个传感器,发送k-1,而判决为j-1的概率。%%%
S ^!n45l
P(i,2,1) = qfunc(T(i)/sigma(i)); %计算第i个传感器的虚警概率Pf
Y4J3-wK5
P(i,1,2) = 1 - qfunc((T(i)-Value(i))/sigma(i));
J9\Cm!H
%计算第i个传感器的漏报概率Pm
1$xNUsD2
P(i,1,1) = 1 - P(i,2,1); %计算第i个传感器的概率1-Pf
aZH:#lUlj
P(i,2,2) = 1 - P(i,1,2); %计算第i个传感器的检测概率Pd
"Bh}}!13
end
f/ U`
iW)8j 8
% 计算融合中心的P(u|H1)
/MIe(,>Uh
Pu_h1 = zeros(2,2,2);
Lm iOhx
for i = 1:2
4-l8,@9
for j = 1:2
q_MPju&*
for k = 1:2
p\ Q5,eg
Pu_h1(i,j,k) = P(1,i,2)*P(2,j,2)*P(3,k,2);
MU($|hwiL
end
FI)17i$
end
:">!r.Q
end
=rMUov h
T(#J_Y
% 计算融合中心的P(u|H0)
R}-(cc%5
Pu_h0 = zeros(2,2,2);
3OrczJ=[UF
for i = 1:2
RFi S@.7
for j = 1:2
lS"T4 5
for k = 1:2
Jf{*PgP
Pu_h0(i,j,k) = P(1,i,1)*P(2,j,1)*P(3,k,1);
=J18eH!]
end
E~DQ-z
end
ZJnYIK
end
Df}A^G >X
a4mn*,
% 计算融合中心的P(u0=1|u)%
j@AIK+0Qc
Pu0_1_u = zeros(2,2,2);
kDEXN
for i = 1:2
DEBB()6,
for j = 1:2
TEP,Dq
for k = 1:2
RF`.xQ26=
judge = C_F*Pu_h0(i,j,k) - C_D*Pu_h1(i,j,k);
U&g@.,Y#
if(judge < 0)
6O7'!@@
Pu0_1_u(i,j,k) = 1;
nXaC3W:"
else
j5(Z_dm'
Pu0_1_u(i,j,k) = 0;
O\ GEay2
end
_mj,u64
end
034iK[ib"
end
`}D,5^9]
end
Wvq27YK'
B?OFe'*
% 计算融合中心的贝叶斯风险
l#g\X'bK
RB = C;
t=BUN
for i = 1:2
0%32=k7O[
for j = 1:2
!eGC6o}f
for k = 1:2
lXx=But
RB = RB + Pu0_1_u(i,j,k)*(C_F*Pu_h0(i,j,k)-C_D*Pu_h1(i,j,k));
]P9l jwR
end
]MqMQLG0t
end
]RZ|u*l=x
end
2A']yD
EH-sZAv
% 计算A_ui
^\hG"5#
for i = 1:2
0 3L]
for j = 1:2
%h hfU6[
A_u1(i,j) = Pu0_1_u(2,i,j) - Pu0_1_u(1,i,j);
B+$%*%b
end
NyaQI<5D
end
|-b#9JQ[A
for i = 1:2
t0( A4E
for j = 1:2
6gkV*|U,e
A_u2(i,j) = Pu0_1_u(i,2,j) - Pu0_1_u(i,1,j);
MH =%-S
end
df*#!D7oz
end
$r^GE
for i = 1:2
dhC$W!N7!
for j = 1:2
GiJ *Wp
A_u3(i,j) = Pu0_1_u(i,j,2) - Pu0_1_u(i,j,1);
k6;?)~.
end
nB_?ckj,
end
T tfo^ksw
b}2ED9HG\
% 计算P(ui|h0)
k)i3
for i = 1:2
55G+;
for j = 1:2
[NF'oRRD9s
P_u1_h0(i,j) = P(2,i,1)*P(3,j,1);
nxO"ua
end
z$&{:\hj
end
?3/qz(bM
for i = 1:2
el&0}`K
for j = 1:2
#{6{TFx\
P_u2_h0(i,j) = P(1,i,1)*P(3,j,1);
%{7|1>8
end
'I`&Yo~c9
end
`oAW7q)~
for i = 1:2
##q2mm:a9P
for j = 1:2
0$(WlP|
P_u3_h0(i,j) = P(1,i,1)*P(2,j,1);
*-#&K\
end
H!@kO]?n
end
):P?
% 计算P(ui|h1)
KsddA
for i = 1:2
#?RU;1)Cw
for j = 1:2
2ElJbN#
P_u1_h1(i,j) = P(2,i,2)*P(3,j,2);
.fn\]rUv
end
>;jZa
end
,D5cjaX<
for i = 1:2
m1j*mtu
for j = 1:2
gGR"Z]DBk
P_u2_h1(i,j) = P(1,i,2)*P(3,j,2);
Z EQ@IS:Y
end
[ieI;OG;
end
Tg7an&#
for i = 1:2
FX;QG94!
for j = 1:2
+*\u :n
P_u3_h1(i,j) = P(1,i,2)*P(2,j,2);
%9 SJ E
end
u6J8"< -W
end
y>S.?H:P
%%%计算新门限值T %%%
2_)\a(.Qu
numerator = zeros(1,3);
{Je[ZQ$
denominator = zeros(1,3);
G5{T5#
for i = 1:2
;Y)w@bNt@
for j = 1:2
O8f?; ]
%% 计算第1个传感器新门限值分子与分母的求和部分
*}Xf!"I#]N
numerator(1) = numerator(1) + A_u1(i,j)*P_u1_h0(i,j);
K> %Tq
denominator(1) = denominator(1) + A_u1(i,j)*P_u1_h1(i,j);
CVDV)#JA
end
x!hh"x
end
<3L5"77G6
for i = 1:2
ZVW'>M7.
for j = 1:2
[RS|gem`
%% 计算第2个传感器新门限值分子与分母的求和部分
XUrXnz|>
numerator(2) = numerator(2) + A_u2(i,j)*P_u2_h0(i,j);
T!uM+6|Y
denominator(2) = denominator(2) + A_u2(i,j)*P_u2_h1(i,j);
&`h{iK7
end
!'Ak&j1:`
end
at @G/?
for i = 1:2
JX<)EZ!F
for j = 1:2
Yh7rU?Gj
numerator(3) = numerator(3) + A_u3(i,j)*P_u3_h0(i,j);
+|*IZ:w)
denominator(3) = denominator(3) + A_u3(i,j)*P_u3_h1(i,j);
H!c@klD
end
"x%Htq@
end
t1]K<>g
if(denominator(1) == 0)
)z>|4@,
break;
G%BjhpL
end
SP@ >vl+;
if(denominator(2) == 0)
zlyS}x@p
break;
sXqz+z$*
end
$5>e
if(denominator(3) == 0)
5b5x!do
break;
P=qa::A
end
9q)Kfz
for i = 1:3
Ii6<b6-
T(i) = C_F*numerator(i) / (C_D*denominator(i));
GeI-\F7b
end
G3txj
if(abs(RB-old_RB) < epsilon)
qjwxhabc
break;
?}qttj
else
5CuuG<0
old_RB = RB;
K~uXO
end
#HYr0Tw6`
if(whileindex == 20)
Y&`=jDI
break;
yZAS# ko}}
end
lVd^ ^T*fh
u\a#{G;Z
end
W=lyIb{?^0
result(index+1) = RB;
}pDqe;a{
end
toLV4BtIG
% 第三步 画贝叶斯风险值随先验概率P0变化曲线
#||}R[~P"
x = 0:0.05:1;
1Vsz4P"O $
plot(x,result,'r');
Y1L[;)H n
title('贝叶斯风险值-先验概率P0曲线');
wrviR
xlabel('先验概率P0');
c>,KZ!
ylabel('贝叶斯风险值');
^/uA?h:]\
共
条评分
发帖
回复