登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
时域有限差分法 FDTD
>
附葛德彪书后程序,新手交流!
发帖
回复
1
2
3
4
6179
阅读
36
回复
[
资料共享
]
附葛德彪书后程序,新手交流!
离线
yuanxiaoain
UID :84183
注册:
2011-10-17
登录:
2012-05-16
发帖:
19
等级:
仿真新人
30楼
发表于: 2011-11-15 10:08:36
运行成功的意思是?画的图也是对的吗?貌似程序里还有点问题啊
共
条评分
离线
前进进
UID :89317
注册:
2012-02-28
登录:
2012-07-14
发帖:
26
等级:
仿真新人
31楼
发表于: 2012-06-27 16:23:25
老是出现错误怎么回事错误 254 Compilation Aborted (code 1)
共
条评分
离线
鑫博2012
UID :98571
注册:
2012-08-27
登录:
2015-03-09
发帖:
311
等级:
仿真三级
32楼
发表于: 2013-01-24 13:11:23
谢谢了,偶也是新手
共
条评分
离线
cdgzs
Don't worry,be happy!!
UID :93906
注册:
2012-05-14
登录:
2025-06-28
发帖:
365
等级:
仿真三级
33楼
发表于: 2013-04-11 10:27:00
看看,学习下。。
共
条评分
Suo des ne!!
离线
jisuandcx
UID :93808
注册:
2012-05-12
登录:
2022-06-25
发帖:
20
等级:
仿真新人
34楼
发表于: 2013-05-14 15:35:57
感谢您的资料
共
条评分
离线
chenhanbo
UID :108940
注册:
2013-06-10
登录:
2013-06-10
发帖:
3
等级:
旁观者
35楼
发表于: 2013-06-10 22:21:37
我下载不了 可以发一个给我嘛?
563179536@qq.com
谢谢了
共
条评分
离线
阁楼者988
UID :96594
注册:
2012-07-06
登录:
2014-04-02
发帖:
77
等级:
仿真一级
36楼
发表于: 2013-06-18 17:10:19
for index = 0:20
#$7d1bx
P0 = index/20;
rDFDrviW_
P1 = 1 - index/20; %计算发送1的先验概率P1
BwMi@r =
T = [1.55 1.5 1.65]; %初始化3个传感器的判决门限
*"Yz"PK
%%%计算贝叶斯风险表达式中的相关常量%%%
n6D9f~8"
C = P0*cost_fac(1,1) + P1*cost_fac(2,1);
t`=TonLb8
C_F = P0*(cost_fac(1,2) - cost_fac(1,1));
%EkV-%o*
C_D = P1*(cost_fac(2,1) - cost_fac(2,2));
JAJo^}}{b
old_RB = 0;
TbX#K:l
whileindex = 0;
hr3RC+ y
%%%求解贝叶斯风险值%%%
v zgR3r
while (1)
6-#<*Pg
whileindex = whileindex + 1;
q-gp;Fm
P = zeros(3,2,2);
tmT/4Ia
for i = 1:3
lz=$Dz
%%% P(i,j,k)表示,对于第i个传感器,发送k-1,而判决为j-1的概率。%%%
HwfBbWHr'
P(i,2,1) = qfunc(T(i)/sigma(i)); %计算第i个传感器的虚警概率Pf
29 {Ep
P(i,1,2) = 1 - qfunc((T(i)-Value(i))/sigma(i));
?#~3%$>
%计算第i个传感器的漏报概率Pm
~2u~}v5m7
P(i,1,1) = 1 - P(i,2,1); %计算第i个传感器的概率1-Pf
Ey<vvZ
P(i,2,2) = 1 - P(i,1,2); %计算第i个传感器的检测概率Pd
"2} {lu
end
ln4gkm<]t
dd1CuOd6(1
% 计算融合中心的P(u|H1)
uc;1{[5`1q
Pu_h1 = zeros(2,2,2);
#tX\m;
for i = 1:2
F]o&m::/K
for j = 1:2
%N+8K
for k = 1:2
'-C%?*ku
Pu_h1(i,j,k) = P(1,i,2)*P(2,j,2)*P(3,k,2);
u~SvR~OE
end
Age
end
)y>o;^5'
end
6[ }~m\cY
XgRrJ.
% 计算融合中心的P(u|H0)
7Nx5n<
Pu_h0 = zeros(2,2,2);
6[3oOO:uo
for i = 1:2
RW| LL@r
for j = 1:2
eaLR-+vEB
for k = 1:2
RhwqAok|lj
Pu_h0(i,j,k) = P(1,i,1)*P(2,j,1)*P(3,k,1);
/g$cQ=c
end
);EW(7KeL
end
Mbbgsy3W
end
n^vL9n_N
|dNJx<-
% 计算融合中心的P(u0=1|u)%
PNy)TqdRS
Pu0_1_u = zeros(2,2,2);
LpRl!\FY$
for i = 1:2
12l-NWXf
for j = 1:2
ab"6]%_
for k = 1:2
uP|Py.+
judge = C_F*Pu_h0(i,j,k) - C_D*Pu_h1(i,j,k);
ueI1O/Mi
if(judge < 0)
6&,n\EXF
Pu0_1_u(i,j,k) = 1;
D<=x<.
else
ZqT8G
Pu0_1_u(i,j,k) = 0;
u /PaXQ
end
=AEl:SY+
end
@c3GJ'"X
end
'dJ#NT25
end
DD 8uG`<
^na8d's:
% 计算融合中心的贝叶斯风险
7G6XK
RB = C;
uu0"k<Tp
for i = 1:2
i,#j@R@.C7
for j = 1:2
y[QQopy4:
for k = 1:2
`y"(\1
RB = RB + Pu0_1_u(i,j,k)*(C_F*Pu_h0(i,j,k)-C_D*Pu_h1(i,j,k));
2J7= O^$?
end
q8&2M
end
`zf,$67>1
end
> mI1wV[
%#5\^4$z|N
% 计算A_ui
Pn?Ujjv
for i = 1:2
R(YhVW_l
for j = 1:2
K>%}m,
A_u1(i,j) = Pu0_1_u(2,i,j) - Pu0_1_u(1,i,j);
H}v.0R
end
tYb8a
end
R`M>w MLH
for i = 1:2
M"XILNV-~
for j = 1:2
]M^k~Xa
A_u2(i,j) = Pu0_1_u(i,2,j) - Pu0_1_u(i,1,j);
5Bwr\]%$P
end
3PRg/vD3
end
iYbp^iVg
for i = 1:2
5:S=gARz
for j = 1:2
b!(ew`Y;
A_u3(i,j) = Pu0_1_u(i,j,2) - Pu0_1_u(i,j,1);
^eF%4DUC;
end
t<8vgdD
end
$y%X#:eLJ
`Wc"Ix0
% 计算P(ui|h0)
Vo1,{"k
for i = 1:2
pF0sXvWGG
for j = 1:2
RP!!6A6:
P_u1_h0(i,j) = P(2,i,1)*P(3,j,1);
h?t#ABsVK
end
JSXJlau
end
M1nH!A~o
for i = 1:2
cV;<!f+
for j = 1:2
0}LBnV
P_u2_h0(i,j) = P(1,i,1)*P(3,j,1);
Ih Yso7g
end
9)c{L<o}T
end
hA?Flq2QV
for i = 1:2
+M )ep\j
for j = 1:2
6t zUp/O
P_u3_h0(i,j) = P(1,i,1)*P(2,j,1);
*[VO03
end
|l \!
end
6yn34'yw
% 计算P(ui|h1)
VkFvV><"
for i = 1:2
ub/Z'!
for j = 1:2
.\Z/j
P_u1_h1(i,j) = P(2,i,2)*P(3,j,2);
&Tc:WD
end
U%.%:'eV=
end
l]g /rs
for i = 1:2
h=?V)WSM
for j = 1:2
x}^:Bs+j
P_u2_h1(i,j) = P(1,i,2)*P(3,j,2);
g5",jTn#
end
@*Y"[\ "$
end
JAt$WW{
for i = 1:2
mGZJ$ |
for j = 1:2
[w*t(A
P_u3_h1(i,j) = P(1,i,2)*P(2,j,2);
$] ])FM"b
end
m-xnbTcQ
end
c>SFttbU
%%%计算新门限值T %%%
/#<R
numerator = zeros(1,3);
N@qP}/}8
denominator = zeros(1,3);
.qd/ft2
for i = 1:2
uUhqj.::<Y
for j = 1:2
E&;[E
%% 计算第1个传感器新门限值分子与分母的求和部分
9F~e^v]zp
numerator(1) = numerator(1) + A_u1(i,j)*P_u1_h0(i,j);
T[?wbYfW
denominator(1) = denominator(1) + A_u1(i,j)*P_u1_h1(i,j);
9_=0:GHk
end
cd&^ vQL8
end
JD\yl[ac%
for i = 1:2
u& 4i=K'x8
for j = 1:2
MWGs:tpL4
%% 计算第2个传感器新门限值分子与分母的求和部分
4n9".UHh
numerator(2) = numerator(2) + A_u2(i,j)*P_u2_h0(i,j);
!O*'mX
denominator(2) = denominator(2) + A_u2(i,j)*P_u2_h1(i,j);
iX&eQ{LB
end
f`;y "ba
end
kjj4%0"
for i = 1:2
]VKM3[
for j = 1:2
OM>,1;UH]
numerator(3) = numerator(3) + A_u3(i,j)*P_u3_h0(i,j);
a *hWODYn
denominator(3) = denominator(3) + A_u3(i,j)*P_u3_h1(i,j);
A{Kc"s4fO
end
dmR>u
end
`s )- lI
if(denominator(1) == 0)
|\}&mBR
break;
Ym% $!#
end
E{wnhsl{
if(denominator(2) == 0)
:D|5E>o(
break;
^uWPbW&/q
end
l+ ,p=
if(denominator(3) == 0)
zh.^> `
break;
6%-RKQi
end
KF .O>c87&
for i = 1:3
xM+_rU M|h
T(i) = C_F*numerator(i) / (C_D*denominator(i));
24g\xNnt
end
$a@T:zfe
if(abs(RB-old_RB) < epsilon)
\X*Es.;|x
break;
nE&`~
else
|>Ld'\i8
old_RB = RB;
9mmkFaBQ
end
dCb7sqJ%
if(whileindex == 20)
~vb yX
break;
(yJY/|
end
]NEr]sc-"F
04j]W]8#
end
~|:U"w\[=
result(index+1) = RB;
-n:~m p
end
'9ki~jtf=
% 第三步 画贝叶斯风险值随先验概率P0变化曲线
-$ VP#%
x = 0:0.05:1;
.S_7R/2(?
plot(x,result,'r');
MQ#nP_i
title('贝叶斯风险值-先验概率P0曲线');
u?Uu>9@Z
xlabel('先验概率P0');
2iWSk6%R
ylabel('贝叶斯风险值');
|#b]e|aP
for index = 0:20
=K\xE"
P0 = index/20;
IgmCZ?l&0
P1 = 1 - index/20; %计算发送1的先验概率P1
`MLOf
T = [1.55 1.5 1.65]; %初始化3个传感器的判决门限
`iQ])C^d
%%%计算贝叶斯风险表达式中的相关常量%%%
B,5kG{2!
C = P0*cost_fac(1,1) + P1*cost_fac(2,1);
6*aU^#Hz6
C_F = P0*(cost_fac(1,2) - cost_fac(1,1));
g7UZtpLTm
C_D = P1*(cost_fac(2,1) - cost_fac(2,2));
G (3wI}
old_RB = 0;
/g`!Zn8a
whileindex = 0;
sk%Xf,
%%%求解贝叶斯风险值%%%
3>'TYXs-
while (1)
R9&3QRW|
whileindex = whileindex + 1;
b)[2t^zG
P = zeros(3,2,2);
[yhK4A
for i = 1:3
De-hHY{>
%%% P(i,j,k)表示,对于第i个传感器,发送k-1,而判决为j-1的概率。%%%
Bs3M7zRG
P(i,2,1) = qfunc(T(i)/sigma(i)); %计算第i个传感器的虚警概率Pf
w-j^jU><3
P(i,1,2) = 1 - qfunc((T(i)-Value(i))/sigma(i));
{i^F4A@=Z
%计算第i个传感器的漏报概率Pm
^\f1zg9I
P(i,1,1) = 1 - P(i,2,1); %计算第i个传感器的概率1-Pf
u\AL`'v
P(i,2,2) = 1 - P(i,1,2); %计算第i个传感器的检测概率Pd
ymW? <\AD,
end
5(\H:g\z
zk;'`@7
% 计算融合中心的P(u|H1)
5r` x\
Pu_h1 = zeros(2,2,2);
f=EWr8mno
for i = 1:2
sd5)We
for j = 1:2
X T<SR]
for k = 1:2
~Fe$/*v
Pu_h1(i,j,k) = P(1,i,2)*P(2,j,2)*P(3,k,2);
5%jy7)8C
end
?onEqH>
end
D#k ~lEPub
end
FX %(<M
J*Q+$Ai~
% 计算融合中心的P(u|H0)
c;B: o
Pu_h0 = zeros(2,2,2);
e~ZxDAd
for i = 1:2
9_b_O T
for j = 1:2
hh[@q*C
for k = 1:2
<\'aUfF v
Pu_h0(i,j,k) = P(1,i,1)*P(2,j,1)*P(3,k,1);
?u4t;
end
|V&E q>G
end
V<i_YLYmJe
end
Y2TXWl,Jk
3Fg{?C_l
% 计算融合中心的P(u0=1|u)%
Yh["IhjR
Pu0_1_u = zeros(2,2,2);
47=YP0r?>T
for i = 1:2
@$|8zPs
for j = 1:2
g7;OZ#\
for k = 1:2
( }RJW:
judge = C_F*Pu_h0(i,j,k) - C_D*Pu_h1(i,j,k);
Z VyJ%"(E
if(judge < 0)
so>jz@!EE
Pu0_1_u(i,j,k) = 1;
7PW7&]-WQ
else
tuslkOE#
Pu0_1_u(i,j,k) = 0;
VvUP;o&/
end
rU |%
end
u*m|o8
end
re xMS
end
N[zR%(YS
YD,<]q%
% 计算融合中心的贝叶斯风险
0O!A8FA0
RB = C;
B;^1W{%J
for i = 1:2
7$JOIsM
for j = 1:2
|%g)H,6c
for k = 1:2
RgD %pNhI
RB = RB + Pu0_1_u(i,j,k)*(C_F*Pu_h0(i,j,k)-C_D*Pu_h1(i,j,k));
xdgbs-a)
end
LL_@nvu}M
end
5D <
end
%D49A-R
.Q!p Q"5
% 计算A_ui
}F';"ybrU)
for i = 1:2
Ms=N+e$n
for j = 1:2
UZ;FrQ(l{
A_u1(i,j) = Pu0_1_u(2,i,j) - Pu0_1_u(1,i,j);
}a"koL
end
hEA;5-m
end
v:gdG|n"
for i = 1:2
^Z+p_;J$p
for j = 1:2
Sw.Kl 0M
A_u2(i,j) = Pu0_1_u(i,2,j) - Pu0_1_u(i,1,j);
Kw =RqF
end
Rr0]~2R
end
9yK\<6}}QH
for i = 1:2
717OzrF}A?
for j = 1:2
~hb;kc3
A_u3(i,j) = Pu0_1_u(i,j,2) - Pu0_1_u(i,j,1);
8xt8kf*k
end
Se.qft?D%(
end
= G>Y9Sc
=bOMtQ]
% 计算P(ui|h0)
c{3P|O&.
for i = 1:2
0O?\0k;o
for j = 1:2
qV)hCc/ ~
P_u1_h0(i,j) = P(2,i,1)*P(3,j,1);
AbL(F#{
end
u)[i'ceQZ:
end
RN2z/FUf
for i = 1:2
bHg 0,N
for j = 1:2
wWVB'MRXB,
P_u2_h0(i,j) = P(1,i,1)*P(3,j,1);
Rxq4Diq5k
end
%x8vvcO^t
end
IqFmJs|C
for i = 1:2
6t{G{ ]
for j = 1:2
AHzm9U @
P_u3_h0(i,j) = P(1,i,1)*P(2,j,1);
mYFc53B
end
?!u9=??
end
]zz%gZz
% 计算P(ui|h1)
-HvJ&O.V$
for i = 1:2
}\QXPU{UVd
for j = 1:2
JYnyo$m/
P_u1_h1(i,j) = P(2,i,2)*P(3,j,2);
Ie}7#>S
end
>?jmeD3u
end
}vd72PB
for i = 1:2
v)aV(Oa
for j = 1:2
0E7h+]bh|
P_u2_h1(i,j) = P(1,i,2)*P(3,j,2);
e\._M$l
end
@o6!
end
v.53fx
for i = 1:2
XPLm`Q|1#t
for j = 1:2
EY@KWs3"H
P_u3_h1(i,j) = P(1,i,2)*P(2,j,2);
xD9ZL
end
3$3%W<&^
end
YbF}>1/"
%%%计算新门限值T %%%
BKK@_B"
numerator = zeros(1,3);
;;N#'.xD
denominator = zeros(1,3);
}O\g<ke:u
for i = 1:2
blUS6"kV}
for j = 1:2
qOAhBZ~
%% 计算第1个传感器新门限值分子与分母的求和部分
NNBT.k3)
numerator(1) = numerator(1) + A_u1(i,j)*P_u1_h0(i,j);
y]g5S-G
denominator(1) = denominator(1) + A_u1(i,j)*P_u1_h1(i,j);
"iJAM`Hi
end
Pf~0JNnc
end
} x KvN
for i = 1:2
TVVu_ib
for j = 1:2
xLP8*lvy
%% 计算第2个传感器新门限值分子与分母的求和部分
gZ us}U
numerator(2) = numerator(2) + A_u2(i,j)*P_u2_h0(i,j);
M hjIE<OI=
denominator(2) = denominator(2) + A_u2(i,j)*P_u2_h1(i,j);
W~5gTiBZ]
end
=N2@H5+7
end
tm.&k6%
for i = 1:2
& j*Ylj}
for j = 1:2
tILnD1q
numerator(3) = numerator(3) + A_u3(i,j)*P_u3_h0(i,j);
S[CWrPaDQ
denominator(3) = denominator(3) + A_u3(i,j)*P_u3_h1(i,j);
hyY^$p+
end
~FVbL-2
end
| Pqs)Mb]
if(denominator(1) == 0)
f\;f&GI
break;
^97[(89G9
end
w+{{4<+cd
if(denominator(2) == 0)
0zk054F'
break;
93/`e}P"o
end
Yc5<Y-W
if(denominator(3) == 0)
f[q_eY
break;
}tJMnq/m($
end
rS0#]Gg
for i = 1:3
-|P7e
T(i) = C_F*numerator(i) / (C_D*denominator(i));
r;O?`~2'4
end
Ch]q:o4
if(abs(RB-old_RB) < epsilon)
<9x|)2P
break;
EcPvE=^c
else
P0rdGf 5T
old_RB = RB;
88}0 4
end
G+WCE*
if(whileindex == 20)
;L,yJ~
break;
KP!7hJhw
end
UMH~Q`"
&zPM#Q
end
z=4E#y`?U
result(index+1) = RB;
'cY@Dqg1
end
?sxf_0*
% 第三步 画贝叶斯风险值随先验概率P0变化曲线
m|[cEZxHB
x = 0:0.05:1;
+!t *LSF
plot(x,result,'r');
*7qa]i^]
title('贝叶斯风险值-先验概率P0曲线');
Xy9'JVV6
xlabel('先验概率P0');
n.A*(@noe
ylabel('贝叶斯风险值');
{"0n^!
for index = 0:20
f5R%F~
P0 = index/20;
_+gpdQq\p
P1 = 1 - index/20; %计算发送1的先验概率P1
~]BR(n
T = [1.55 1.5 1.65]; %初始化3个传感器的判决门限
xEB4oQ5
%%%计算贝叶斯风险表达式中的相关常量%%%
9lX[rBZ
C = P0*cost_fac(1,1) + P1*cost_fac(2,1);
:(I=z6
C_F = P0*(cost_fac(1,2) - cost_fac(1,1));
NM1TFs2Y*
C_D = P1*(cost_fac(2,1) - cost_fac(2,2));
akQb%Wq
old_RB = 0;
mG%cE(j*D
whileindex = 0;
|[!0ry*N%
%%%求解贝叶斯风险值%%%
cGWL'r)P
while (1)
<JZa
whileindex = whileindex + 1;
Y'y$k
P = zeros(3,2,2);
z.W1Za
for i = 1:3
G~NhBA9
%%% P(i,j,k)表示,对于第i个传感器,发送k-1,而判决为j-1的概率。%%%
`KE(R8y
P(i,2,1) = qfunc(T(i)/sigma(i)); %计算第i个传感器的虚警概率Pf
V{{UsEVO
P(i,1,2) = 1 - qfunc((T(i)-Value(i))/sigma(i));
XX*f
%计算第i个传感器的漏报概率Pm
cSj(u%9}
P(i,1,1) = 1 - P(i,2,1); %计算第i个传感器的概率1-Pf
! &V,+}>)
P(i,2,2) = 1 - P(i,1,2); %计算第i个传感器的检测概率Pd
VKi3z%kwK
end
>Lz2zlZI
r?x~`C
% 计算融合中心的P(u|H1)
!zxq9IhWR
Pu_h1 = zeros(2,2,2);
XlGB`P>?KD
for i = 1:2
gIcPKj"8${
for j = 1:2
(; Zl
for k = 1:2
Kt_HJ!
Pu_h1(i,j,k) = P(1,i,2)*P(2,j,2)*P(3,k,2);
obw:@i#
end
6,]2;'
end
|h:3BV_
end
+*RpOtss
7.C]ZcU
% 计算融合中心的P(u|H0)
!Tu.A@
Pu_h0 = zeros(2,2,2);
& aF'IJC
for i = 1:2
FFH{#|_1
for j = 1:2
hflDVGBW
for k = 1:2
) |hHbD^V
Pu_h0(i,j,k) = P(1,i,1)*P(2,j,1)*P(3,k,1);
'eoI~*}3WQ
end
C,u;l~zz
end
qche7kg!a
end
uMBb=
Pv@;)s(-
% 计算融合中心的P(u0=1|u)%
dRTpGz
Pu0_1_u = zeros(2,2,2);
!" : arK
for i = 1:2
H/ub=,Ej*
for j = 1:2
m>b i$Y
for k = 1:2
+Jc-9Ko\c;
judge = C_F*Pu_h0(i,j,k) - C_D*Pu_h1(i,j,k);
s_,&"->
if(judge < 0)
YGLR%PYv"
Pu0_1_u(i,j,k) = 1;
B^1 Io9
else
H{;8i7%
Pu0_1_u(i,j,k) = 0;
gwYTOs^
end
UOIZ8Po
end
/h@rLJ)o>
end
tWdP5vfp
end
wSs78c=
St1>J.k_
% 计算融合中心的贝叶斯风险
y] ~X{v
RB = C;
N?Ss/by8Sg
for i = 1:2
l1RFn,Tzr
for j = 1:2
;}k_2mr~
for k = 1:2
3*b!]^d:D
RB = RB + Pu0_1_u(i,j,k)*(C_F*Pu_h0(i,j,k)-C_D*Pu_h1(i,j,k));
j0jam:.p
end
ix}*whW=U
end
\y/+H
end
J~G"D-l<9/
g/,O51f'
% 计算A_ui
O0"&wvR+5
for i = 1:2
c>Ljv('bj
for j = 1:2
$E@ke:
A_u1(i,j) = Pu0_1_u(2,i,j) - Pu0_1_u(1,i,j);
fGLOXbsA
end
v aaZ
end
yM34G S=,J
for i = 1:2
t,;b*ZR
for j = 1:2
u"a$/
A_u2(i,j) = Pu0_1_u(i,2,j) - Pu0_1_u(i,1,j);
2qkC{klC^M
end
Q_a%$a.rV
end
wmPpE_{
for i = 1:2
Iyvl6
for j = 1:2
]cI(||x
A_u3(i,j) = Pu0_1_u(i,j,2) - Pu0_1_u(i,j,1);
U0S}O(Ptr
end
9a_(_g>S
end
O4 Y;
0 .p $q
% 计算P(ui|h0)
gClDVO
for i = 1:2
fmq^AnKd
for j = 1:2
on1mu't_;
P_u1_h0(i,j) = P(2,i,1)*P(3,j,1);
BcoE&I?[m|
end
Xq%!(YD|
end
YuDNm}r[
for i = 1:2
4^B:Q9B)
for j = 1:2
k4 %> F
P_u2_h0(i,j) = P(1,i,1)*P(3,j,1);
/h%MWCZWm^
end
v6?<)M%
end
gM3gc;
for i = 1:2
}(XvI^K[^
for j = 1:2
^SRa!8z$W
P_u3_h0(i,j) = P(1,i,1)*P(2,j,1);
Jh:-<xy)
end
v]27+/a$c
end
("BFI
% 计算P(ui|h1)
L9U<E $%#
for i = 1:2
R:JS)>B
for j = 1:2
_'oy C(:}
P_u1_h1(i,j) = P(2,i,2)*P(3,j,2);
y/2U:H
end
+NEP*mk
end
I!Za2?
for i = 1:2
k07) g:_
for j = 1:2
h Tn^:%(
P_u2_h1(i,j) = P(1,i,2)*P(3,j,2);
k .l,>s`!
end
P6 G/J-
end
)+9D$m=P;
for i = 1:2
>Y< y]vM:
for j = 1:2
3/@'tLtN
P_u3_h1(i,j) = P(1,i,2)*P(2,j,2);
JGD{cr[S
end
zR3Z(^]v
end
efP2 C\
%%%计算新门限值T %%%
Qi7^z;
numerator = zeros(1,3);
7+u%]D!
denominator = zeros(1,3);
}Mo9r4}
for i = 1:2
^ihXM]1{G
for j = 1:2
Ic&t_B*i}]
%% 计算第1个传感器新门限值分子与分母的求和部分
73(T+6`
numerator(1) = numerator(1) + A_u1(i,j)*P_u1_h0(i,j);
\9k{"4jX\
denominator(1) = denominator(1) + A_u1(i,j)*P_u1_h1(i,j);
cw <DM%p
end
3B"rI
end
ikRIL2Y
for i = 1:2
.< vg[
for j = 1:2
7\U1K^q
%% 计算第2个传感器新门限值分子与分母的求和部分
/ADxHw`k
numerator(2) = numerator(2) + A_u2(i,j)*P_u2_h0(i,j);
C5RDP~au
denominator(2) = denominator(2) + A_u2(i,j)*P_u2_h1(i,j);
hOMFDfhU
end
o-Idr{
end
z?"5="D
for i = 1:2
JT^E`<nn
for j = 1:2
r5iO%JFg
numerator(3) = numerator(3) + A_u3(i,j)*P_u3_h0(i,j);
|:r/K
denominator(3) = denominator(3) + A_u3(i,j)*P_u3_h1(i,j);
0I?3@Nz6
end
Azz]TO
end
gkk <-j'
if(denominator(1) == 0)
D&9j$#9Rh
break;
TzL40="F
end
p r0V) C6
if(denominator(2) == 0)
_zmx
break;
6l vx
end
JkxS1
if(denominator(3) == 0)
v V^ GIWK
break;
khv! \^&DD
end
iK%Rq
for i = 1:3
|PJW2PN
T(i) = C_F*numerator(i) / (C_D*denominator(i));
Jp-ae0 Ewa
end
mQs'2Y6Oa
if(abs(RB-old_RB) < epsilon)
n"K7@[d
break;
OEwfNZQ-
else
UXk8nH
old_RB = RB;
F<(xz=
end
IfXLnD^||
if(whileindex == 20)
:M[E-j;
break;
V!U[N.&$
end
f|^f^Hu:{
C aJD*
end
4QZy-a*tA
result(index+1) = RB;
wD,F=O
end
^:)&KV8D|
% 第三步 画贝叶斯风险值随先验概率P0变化曲线
l*:p==
x = 0:0.05:1;
"^D6%I#T
plot(x,result,'r');
YKc{P"'/|
title('贝叶斯风险值-先验概率P0曲线');
VD3[ko
xlabel('先验概率P0');
}t-r:R$,
ylabel('贝叶斯风险值');
&s <
共
条评分
发帖
回复