登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
时域有限差分法 FDTD
>
3-D FDTD code with UPML absorbing boundary conditions
发帖
回复
6538
阅读
4
回复
[
求助
]
3-D FDTD code with UPML absorbing boundary conditions
离线
wuzjian@126
UID :20979
注册:
2008-11-07
登录:
2009-05-18
发帖:
44
等级:
仿真新人
0楼
发表于: 2009-04-19 21:43:51
%***********************************************************************
Fv| )[>z0
% 3-D FDTD code with UPML absorbing boundary conditions
e7n[NVrX
%***********************************************************************
!HV<2q()
%
8)Z)pCN
% Program author: Keely J. Willis, Graduate Student
f ye=8 r
% UW Computational Electromagnetics Laboratory
DlMT<ld
% Director: Susan C. Hagness
;hz;|\ko5
% Department of Electrical and Computer Engineering
CyR1.|!@
% University of Wisconsin-Madison
jpGZ&L7i&
% 1415 Engineering Drive
8^ujA
% Madison, WI 53706-1691
>}"9heF
%
kjwillis@wisc.edu
>cTSX
%
0*=[1tdWY
% Copyright 2005
>8v4fk IK
%
[w1 4hHnq
% This MATLAB M-file implements the finite-difference time-domain
{*BZ;Xh\8
% solution of Maxwell's curl equations over a three-dimensional
n+'gVEBA
% Cartesian space lattice comprised of uniform cubic grid cells.
4r+@7hnK
%
|~+i=y
% The dimensions of the computational domain are 8.2 cm
j aU.hASj
% (x-direction), 3.4 cm (y-direction), and 3.2 cm (z-direction).
[3@Pu.-I+M
% The grid is terminated with UPML absorbing boundary conditions.
lG1\41ZxB
%
// k`X
% An electric current source comprised of two collinear Jz components
PLb[U(~
% (realizing a Hertzian dipole) excites a radially propagating wave.
ro%Jg
% The current source is located in the center of the grid. The
_A>?@3La9
% source waveform is a differentiated Gaussian pulse given by
Ie z`g<r
% J(t)=J0*(t-t0)*exp(-(t-t0)^2/tau^2),
EE{]EW(
% where tau=50 ps. The FWHM spectral bandwidth of this zero-dc-
xWiR7~E
% content pulse is approximately 7 GHz. The grid resolution
rf ?\s/#OY
% (dx = 2 mm) was chosen to provide at least 10 samples per
mqt$'_M
% wavelength up through 15 GHz.
NFsCq_f
%
v,[E*qMN
% To execute this M-file, type "fdtd3D_UPML" at the MATLAB prompt.
SsY:gp_
%
H Q_IQ+
% This code has been tested in the following Matlab environments:
e+TSjm
% Matlab version 6.1.0.450 Release 12.1 (May 18, 2001)
io[>`@=
% Matlab version 6.5.1.199709 Release 13 Service Pack 1 (August 4, 2003)
(D<_ iV
% Matlab version 7.0.0.19920 R14 (May 6, 2004)
pO_$ 8=G+
% Matlab version 7.0.1.24704 R14 Service Pack 1 (September 13, 2004)
"mtEjK5
% Matlab version 7.0.4.365 R14 Service Pack 2 (January 29, 2005)
M:5K4$>Kx
%
l_2B
% Note: if you are using Matlab version 6.x, you may wish to make
-eQ>3x&3r
% one or more of the following modifications to this code:
j;7:aM"BQW
% --uncomment line numbers 485 and 486
\aY<| 7zK
% --comment out line numbers 552 and 561
xlP0?Y1Bl
%
K Y=$RO
%***********************************************************************
^b;3Jj
vWs#4JoG
clear
` P,-NVB
O>KrTK-AV
%***********************************************************************
j*6>{_[
% Fundamental constants
kMz*10$gn
%***********************************************************************
~WW!P_wI,
N 4!18{/2
cc=2.99792458e8;
ZL7#44
muz=4.0*pi*1.0e-7;
.7<6 zG6J
epsz=1.0/(cc*cc*muz);
(i1q ".
etaz=sqrt(muz/epsz);
]4X08Cm^
)wM881_!
%***********************************************************************
x@p1(V.
% Material parameters
)8JfBzR
%***********************************************************************
~VKuRli|m
Hz>_tA"^T
mur=1.0;
{0o,2]o!:
epsr=1.0;
,SF>$ .
eta=etaz*sqrt(mur/epsr);
gb^<6BYUG
d5YL=o
%***********************************************************************
riu_^!"Z_
% Grid parameters
6N#0D2~^
%
oG$OZTc
% Each grid size variable name describes the number of sampled points
Nf^6t1se
% for a particular field component in the direction of that component.
@UK%l :L
% Additionally, the variable names indicate the region of the grid
h`@z61UI
% for which the dimension is relevant. For example, ie_tot is the
Oj F]K,$
% number of sample points of Ex along the x-axis in the total
:#zVF[Y(2
% computational grid, and jh_bc is the number of sample points of Hy
KKRj#m(:!
% along the y-axis in the y-normal UPML regions.
ul&}'jBr
%
[W8"Mc|ve
%***********************************************************************
o]<@E u G
oB8LJZ;
ie=41; % Size of main grid
\hO}3;*&
je=17;
Q>yO,H|
ke=16;
B;A< pNT
ih=ie+1;
}v`Z.?|Z
jh=je+1;
+v)+ k
kh=ke+1;
sLOkLz"x
KX^! t3l6
upml=10; % Thickness of PML boundaries
Ywo=w:'
ih_bc=upml+1;
aJzyEb
jh_bc=upml+1;
GTocN1,Z~a
kh_bc=upml+1;
Yma-$ytp
-d]v6q'1
ie_tot=ie+2*upml; % Size of total computational domain
#ULzh&yO
je_tot=je+2*upml;
@#>YU
ke_tot=ke+2*upml;
-\[&<o@/D
ih_tot=ie_tot+1;
}I"k=>Ycns
jh_tot=je_tot+1;
+'"NKZ.>TT
kh_tot=ke_tot+1;
6sQY)F7p
6 9s%
is=round(ih_tot/2); % Location of z-directed current source
\!Wph5wA
js=round(jh_tot/2);
*?x[pqGq
ks=round(ke_tot/2);
9TUB3x^
]^6r7nfR6|
%***********************************************************************
5@nvcCp
% Fundamental grid parameters
vWZ?*0^
%***********************************************************************
3>#io^35
hbSXa'
delta=0.002;
eAK=ylF;
dt=delta*sqrt(epsr*mur)/(2.0*cc);
aE2Yl
nmax=100;
O|mWQp^?q
QR\2%}9b
%***********************************************************************
Blox~=cW
% Differentiated Gaussian pulse excitation
,KaO8^PB
%***********************************************************************
l3Wh&*0
P_F0lO
rtau=50.0e-12;
+ZJ1> n
tau=rtau/dt;
b\Mb6s
ndelay=3*tau;
G<FB:?|
J0=-1.0*epsz;
Z&6*8#wn
LJwy,-
%***********************************************************************
1#lH5|XQ
% Initialize field arrays
}Sh3AH/
%***********************************************************************
G4,.kK
Y?4N%c_;
ex=zeros(ie_tot,jh_tot,kh_tot);
fD#!0^
ey=zeros(ih_tot,je_tot,kh_tot);
+EvY-mwfQ
ez=zeros(ih_tot,jh_tot,ke_tot);
@^t1SPp
dx=zeros(ie_tot,jh_tot,kh_tot);
THcX.%ToT
dy=zeros(ih_tot,je_tot,kh_tot);
4CK$W`V
dz=zeros(ih_tot,jh_tot,ke_tot);
Z^t{m!v
&9khIJIn
hx=zeros(ih_tot,je_tot,ke_tot);
@ [<B:Tqo
hy=zeros(ie_tot,jh_tot,ke_tot);
4Jk[X>I~
hz=zeros(ie_tot,je_tot,kh_tot);
<y<
bx=zeros(ih_tot,je_tot,ke_tot);
| E\ u
by=zeros(ie_tot,jh_tot,ke_tot);
k&pV`.Imi
bz=zeros(ie_tot,je_tot,kh_tot);
3Lm7{s?=Z-
3RP\w~?
%***********************************************************************
0I}c|V'P
% Initialize update coefficient arrays
; 6q`c!p7
%***********************************************************************
mc|8t0+1`
a\xf\$Ym
C1ex=zeros(size(ex));
]owcx=5q%'
C2ex=zeros(size(ex));
iHk/#a
C3ex=zeros(size(ex));
,D93A
C4ex=zeros(size(ex));
|5(un/-C
C5ex=zeros(size(ex));
Gxw>.O){
C6ex=zeros(size(ex));
OP98 sd&T
q\d/-K
C1ey=zeros(size(ey));
,H@ x.
C2ey=zeros(size(ey));
$p\ 0/
C3ey=zeros(size(ey));
`C)|}qcC
C4ey=zeros(size(ey));
| W<jN
C5ey=zeros(size(ey));
r}|a*dh'R
C6ey=zeros(size(ey));
9D @}(t!
]DK.4\^
C1ez=zeros(size(ez));
XSktbk
C2ez=zeros(size(ez));
,L;%-}#$
C3ez=zeros(size(ez));
"vo o!&<
C4ez=zeros(size(ez));
Jyyr'1/<k
C5ez=zeros(size(ez));
FJIo]p
C6ez=zeros(size(ez));
'&F PkT:5
-"x25~k!?F
D1hx=zeros(size(hx));
>_u5"&q
D2hx=zeros(size(hx));
K j6@=
D3hx=zeros(size(hx));
.tzQ hd>
D4hx=zeros(size(hx));
xeKfc}:&z
D5hx=zeros(size(hx));
q j*77
D6hx=zeros(size(hx));
7D=gAMPvJ
iz:O]kI
D1hy=zeros(size(hy));
kp8kp`S7
D2hy=zeros(size(hy));
8C5*: x9l
D3hy=zeros(size(hy));
xX\A&9m
D4hy=zeros(size(hy));
,H5o/qNU`{
D5hy=zeros(size(hy));
%!V =noo
D6hy=zeros(size(hy));
?dQ#%06mn
^dRgYi"(A
D1hz=zeros(size(hz));
gjP bhY=C[
D2hz=zeros(size(hz));
o(Q='kK
D3hz=zeros(size(hz));
S,GM!YZg
D4hz=zeros(size(hz));
7DB!s@"
D5hz=zeros(size(hz));
^03M~SNCj
D6hz=zeros(size(hz));
BF(Kaf;<t.
)WbE -m
%***********************************************************************
S!R:a>\
% Update coefficients, as described in Section 7.8.2.
F=V_ACU
%
D*q:XO6b
% In order to simplify the update equations used in the time-stepping
ke5_lr(
% loop, we implement UPML update equations throughout the entire
[OwrIL
% grid. In the main grid, the electric-field update coefficients of
~uw eBp~O
% Equations 7.91a-f and the correponding magnetic field update
Z]k+dJ[-
% coefficients extracted from Equations 7.89 and 7.90 are simplified
1*]@1DJt
% for the main grid (free space) and calculated below.
($s%B
%
^e:rRk7 &
%***********************************************************************
0T<DHPQ1
3NlG,e'T2
C1=1.0;
r&O:Bt}x
C2=dt;
-3Auo0
C3=1.0;
{p7b\=WB-
C4=1.0/2.0/epsr/epsr/epsz/epsz;
giu8EjzK
C5=2.0*epsr*epsz;
FS6I?q#tQ
C6=2.0*epsr*epsz;
OIrr'uNH
V6tUijz
D1=1.0;
c3|/8
D2=dt;
-"w&g0Z
D3=1.0;
H >1mi_1
D4=1.0/2.0/epsr/epsz/mur/muz;
~.TKzh'eB
D5=2.0*epsr*epsz;
Qh,Dcg2ZM"
D6=2.0*epsr*epsz;
'Q4V(.
Kz9h{Tu4
%***********************************************************************
ka[%p, H
% Initialize main grid update coefficients
9 p`|~^X
%***********************************************************************
m95;NT1N/g
Yf[GpSej
C1ex(:,jh_bc:jh_tot-upml,:)=C1;
J7$JW3O
C2ex(:,jh_bc:jh_tot-upml,:)=C2;
X{;3gN
C3ex(:,:,kh_bc:kh_tot-upml)=C3;
<dX7{="&
C4ex(:,:,kh_bc:kh_tot-upml)=C4;
42 &m)
C5ex(ih_bc:ie_tot-upml,:,:)=C5;
1/vcj~|)t
C6ex(ih_bc:ie_tot-upml,:,:)=C6;
R\>=}7
uz@WW!+o
C1ey(:,:,kh_bc:kh_tot-upml)=C1;
\ Q0-yNt
C2ey(:,:,kh_bc:kh_tot-upml)=C2;
nISfRXU;
C3ey(ih_bc:ih_tot-upml,:,:)=C3;
m|k:wuzqK
C4ey(ih_bc:ih_tot-upml,:,:)=C4;
?KXgG'!!
C5ey(:,jh_bc:je_tot-upml,:)=C5;
Tsl0$(2W
C6ey(:,jh_bc:je_tot-upml,:)=C6;
ARa9Ia{@
!_LRuqQ?"
C1ez(ih_bc:ih_tot-upml,:,:)=C1;
D(^ |'1
C2ez(ih_bc:ih_tot-upml,:,:)=C2;
nY=]KU
C3ez(:,jh_bc:jh_tot-upml,:)=C3;
5wGc"JHm
C4ez(:,jh_bc:jh_tot-upml,:)=C4;
6l?\iE
C5ez(:,:,kh_bc:ke_tot-upml)=C5;
@P xX]e
C6ez(:,:,kh_bc:ke_tot-upml)=C6;
Tp fC
YLe$Vv735
D1hx(:,jh_bc:je_tot-upml,:)=D1;
h&6t.2<e
D2hx(:,jh_bc:je_tot-upml,:)=D2;
#wL8=QTcNC
D3hx(:,:,kh_bc:ke_tot-upml)=D3;
P] 9-+
D4hx(:,:,kh_bc:ke_tot-upml)=D4;
e(;nhU3a*,
D5hx(ih_bc:ih_tot-upml,:,:)=D5;
rQ$Jk[Y
D6hx(ih_bc:ih_tot-upml,:,:)=D6;
O{44GB3
x\!Uk!fM
D1hy(:,:,kh_bc:ke_tot-upml)=D1;
h2fTG
D2hy(:,:,kh_bc:ke_tot-upml)=D2;
gj<Y+Dv>
D3hy(ih_bc:ie_tot-upml,:,:)=D3;
P1}Fn:Xe%7
D4hy(ih_bc:ie_tot-upml,:,:)=D4;
cT,5xp"a
D5hy(:,jh_bc:jh_tot-upml,:)=D5;
]{E{ IW8
D6hy(:,jh_bc:jh_tot-upml,:)=D6;
o0Pc^
S1a}9Z|
D1hz(ih_bc:ie_tot-upml,:,:)=D1;
]2'{W]m
D2hz(ih_bc:ie_tot-upml,:,:)=D2;
,L,?xvWG
D3hz(:,jh_bc:je_tot-upml,:)=D3;
x $=-lB
D4hz(:,jh_bc:je_tot-upml,:)=D4;
a>/jW-?
D5hz(:,:,kh_bc:kh_tot-upml)=D5;
I\oI"\}U
D6hz(:,:,kh_bc:kh_tot-upml)=D6;
*<T,Fyc|
AHtLkfr(r
%***********************************************************************
]WP[hF
% Fill in PML regions
F` gQ[
%
]Qb85;0)
% PML theory describes a continuous grading of the material properties
|h75S.UY
% over the PML region. In the FDTD grid it is necessary to discretize
*WX,bN6Ot
% the grading by averaging the material properties over a grid cell
qra5&Fvb
% width centered on each field component. As an example of the
>aV Q
% implementation of this averaging, we take the integral of the
w`F4.e
% continuous sigma(x) in the PML region
(vqI@fB';u
%
SSG}'W!z
% sigma_i = integral(sigma(x))/delta
lhLE)B2a2
%
vW:XM0
% where the integral is over a single grid cell width in x, and is
~R\Z&oQ
% bounded by x1 and x2. Applying this to the polynomial grading of
}Qo:;&"3
% Equation 7.60a produces
4'ymPPY
%
+x"cWOg
% sigma_i = (x2^(m+1)-x1^(m+1))*sigmam/(delta*(m+1)*d^m)
*C n `pfO
%
(>gAnebN L
% where sigmam is the maximum value of sigma as described by Equation
En]+mIEo
% 7.62.
;\N${YIn
%
om'DaG`A
% The definitions of x1 and x2 depend on the position of the field
-jOCzp
% component within the grid cell. We have either
cWG?`6xU&
%
|UZhMF4/-L
% x1 = (i-0.5)*delta, x2 = (i+0.5)*delta
)./'`Mx?
%
H3Z"u
% or
yvz2eAXa
%
.ko}m{
% x1 = (i)*delta, x2 = (i+1)*delta
K,\Bj/V(
%
9x0Ao*D<t
% where i varies over the PML region.
-H;p +XAY
%
]$gBX=
%***********************************************************************
@(_M\>!%M
p4-bD_
rmax=exp(-16); %desired reflection error, designated as R(0) in Equation 7.62
`&-)(#
"O,TL*$
orderbc=4; %order of the polynomial grading, designated as m in Equation 7.60a,b
yxU??#v|g
A(>kp=~
% x-varying material properties
#`9D,+2iB%
delbc=upml*delta;
~Q)137u]P
sigmam=-log(rmax)*(orderbc+1.0)/(2.0*eta*delbc);
d9n{jv|
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1.0));
L_WVTz?`
kmax=1;
C/L+:b&x~
kfactor=(kmax-1.0)/delta/(orderbc+1.0)/delbc^orderbc;
MGzuQrl{H
d5ivtK?
for i=1:upml
M&5;Qeoiv
;+/[<bv d"
% Coefficients for field components in the center of the grid cell
A&~<qgBTp
x1=(upml-i+1)*delta;
0Zv<]xO
x2=(upml-i)*delta;
|2eF~tJqc
sigma=sigfactor*(x1^(orderbc+1)-x2^(orderbc+1));
R^=)Ucj
ki=1+kfactor*(x1^(orderbc+1)-x2^(orderbc+1));
0aS&!"o!
facm=(2*epsr*epsz*ki-sigma*dt);
Lp?JSMe
facp=(2*epsr*epsz*ki+sigma*dt);
=Nj58 l
L?c7M}vV
C5ex(i,:,:)=facp;
$2j?Z.yEG
C5ex(ie_tot-i+1,:,:)=facp;
H _%yh,L
C6ex(i,:,:)=facm;
.g6DKjy>
C6ex(ie_tot-i+1,:,:)=facm;
ihrl!A5
D1hz(i,:,:)=facm/facp;
e~,/Z\i
D1hz(ie_tot-i+1,:,:)=facm/facp;
!z.C}n5F
D2hz(i,:,:)=2.0*epsr*epsz*dt/facp;
Py)'%e
D2hz(ie_tot-i+1,:,:)=2.0*epsr*epsz*dt/facp;
{} 11U0
D3hy(i,:,:)=facm/facp;
@94_'i7\
D3hy(ie_tot-i+1,:,:)=facm/facp;
=_/,C
D4hy(i,:,:)=1.0/facp/mur/muz;
`xpU
D4hy(ie_tot-i+1,:,:)=1.0/facp/mur/muz;
5c~OG6COx
Tpv]c
% Coefficients for field components on the grid cell boundary
pWwB<F
x1=(upml-i+1.5)*delta;
=5-|H;da
x2=(upml-i+0.5)*delta;
ages-Z_X
sigma=sigfactor*(x1^(orderbc+1)-x2^(orderbc+1));
!MiH^wP
ki=1.0+kfactor*(x1^(orderbc+1)-x2^(orderbc+1));
4l~0LdYXKm
facm=(2.0*epsr*epsz*ki-sigma*dt);
8I'Am"bc\
facp=(2.0*epsr*epsz*ki+sigma*dt);
LFx*_3a
mfNYN4Um6
C1ez(i,:,:)=facm/facp;
H8}}R~ZO
C1ez(ih_tot-i+1,:,:)=facm/facp;
)@]Y1r4U
C2ez(i,:,:)=2.0*epsr*epsz*dt/facp;
j`9+pI
C2ez(ih_tot-i+1,:,:)=2.0*epsr*epsz*dt/facp;
+I+7@Xi Z
C3ey(i,:,:)=facm/facp;
+'NiuN
C3ey(ih_tot-i+1,:,:)=facm/facp;
Gv};mkX[N
C4ey(i,:,:)=1.0/facp/epsr/epsz;
"c S?t
C4ey(ih_tot-i+1,:,:)=1.0/facp/epsr/epsz;
}m~2[5q%/
D5hx(i,:,:)=facp;
lTh}0t
D5hx(ih_tot-i+1,:,:)=facp;
'e(`2
D6hx(i,:,:)=facm;
-Oro$=%
D6hx(ih_tot-i+1,:,:)=facm;
P|S'MS';:
mj{/'
end
I=,u7w`m
2_4m}T3
% PEC walls
e8TJ =}\
C1ez(1,:,:)=-1.0;
2@(Qd3N(
C1ez(ih_tot,:,:)=-1.0;
W~1MeAI
C2ez(1,:,:)=0.0;
_/)?GXwLn
C2ez(ih_tot,:,:)=0.0;
sH>Z{xjr
C3ey(1,:,:)=-1.0;
nFn@Z'T$N
C3ey(ih_tot,:,:)=-1.0;
`euk&]/^.)
C4ey(1,:,:)=0.0;
kXq*Jq
C4ey(ih_tot,:,:)=0.0;
Q\DD^Pbq
T&2aNkuG
% y-varying material properties
Wkk=x&
delbc=upml*delta;
A~!3svJW
sigmam=-log(rmax)*epsr*epsz*cc*(orderbc+1.0)/(2.0*delbc);
'42P=vzo
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1.0));
U-$ B"w &
kmax=1.0;
?'_Q^O>
kfactor=(kmax-1.0)/delta/(orderbc+1.0)/delbc^orderbc;
hupYiI~
#egP*{F
for j=1:upml
# Z*nc0C
h%Nbx:vKk
% Coefficients for field components in the center of the grid cell
"/)}Cc,L
y1=(upml-j+1)*delta;
hal3J
y2=(upml-j)*delta;
S|8O$9{x9q
sigma=sigfactor*(y1^(orderbc+1)-y2^(orderbc+1));
o'3t(dyyH
ki=1+kfactor*(y1^(orderbc+1)-y2^(orderbc+1));
H:ar&o#(
facm=(2*epsr*epsz*ki-sigma*dt);
xpf\S10e
facp=(2*epsr*epsz*ki+sigma*dt);
J! @$lyH
6c3+q+#J2
C5ey(:,j,:)=facp;
&S.zc@rN
C5ey(:,je_tot-j+1,:)=facp;
eKL)jzC:
C6ey(:,j,:)=facm;
$h Isab_
C6ey(:,je_tot-j+1,:)=facm;
5O9Oi:-!c
D1hx(:,j,:)=facm/facp;
I499Rrw#E
D1hx(:,je_tot-j+1,:)=facm/facp;
h<wF;g,
D2hx(:,j,:)=2*epsr*epsz*dt/facp;
*q%)q
D2hx(:,je_tot-j+1,:)=2*epsr*epsz*dt/facp;
G}tq'#]E{z
D3hz(:,j,:)=facm/facp;
RoXU>a:nS
D3hz(:,je_tot-j+1,:)=facm/facp;
VK+#!!Ha
D4hz(:,j,:)=1/facp/mur/muz;
4:=eO!6
D4hz(:,je_tot-j+1,:)=1/facp/mur/muz;
~67L
MK]S205{
% Coefficients for field components on the grid cell boundary
5@+8*Fdk
y1=(upml-j+1.5)*delta;
]3iu-~
y2=(upml-j+0.5)*delta;
W`C&$v#
sigma=sigfactor*(y1^(orderbc+1)-y2^(orderbc+1));
h-1eDxK6
ki=1+kfactor*(y1^(orderbc+1)-y2^(orderbc+1));
89B1\ff
facm=(2*epsr*epsz*ki-sigma*dt);
>sE5zj|V
facp=(2*epsr*epsz*ki+sigma*dt);
K/ q:aMq
'\:?FQ C
C1ex(:,j,:)=facm/facp;
;a+>><x]
C1ex(:,jh_tot-j+1,:)=facm/facp;
Fc;)p88[
C2ex(:,j,:)=2*epsr*epsz*dt/facp;
<dTo-P
C2ex(:,jh_tot-j+1,:)=2*epsr*epsz*dt/facp;
K%<Z"2!+
C3ez(:,j,:)=facm/facp;
^Slwg|t*~P
C3ez(:,jh_tot-j+1,:)=facm/facp;
3ySP*J5
C4ez(:,j,:)=1/facp/epsr/epsz;
j.GpJDq
C4ez(:,jh_tot-j+1,:)=1/facp/epsr/epsz;
|5}{4k~9J
D5hy(:,j,:)=facp;
~>@Dn40
D5hy(:,jh_tot-j+1,:)=facp;
n_@YKz;8
D6hy(:,j,:)=facm;
n8zh;vuJ
D6hy(:,jh_tot-j+1,:)=facm;
'|e5 cW6z
jZ <*XX
end
BZqb o `9
x C'>W"pY
% PEC walls
=>6Z"LD(
C1ex(:,1,:)=-1;
}6P]32d
C1ex(:,jh_tot,:)=-1;
'M\ou}P
C2ex(:,1,:)=0;
DTdL|x.{
C2ex(:,jh_tot,:)=0;
$S$%avRX
C3ez(:,1,:)=-1;
BCya5!uy
C3ez(:,jh_tot,:)=-1;
zxCxGT\;
C4ez(:,1,:)=0;
G }<q
C4ez(:,jh_tot,:)=0;
V#W(c_g
B @]( ,
% z-varying material properties
%ma1LN[
delbc=upml*delta;
R Nr=M^Zn
sigmam=-log(rmax)*epsr*epsz*cc*(orderbc+1)/(2*delbc);
E'LkoyI
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1));
#(@dN+
kmax=1;
t-SGG{
kfactor=(kmax-1)/delta/(orderbc+1)/delbc^orderbc;
:L9\`&}FS
VGBL<X
for k=1:upml
EX8:B.z`57
J#CF S G
% Coefficients for field components in the center of the grid cell
R|{6JsjG10
z1=(upml-k+1)*delta;
au8bEw&W
z2=(upml-k)*delta;
&^thKXEC
sigma=sigfactor*(z1^(orderbc+1)-z2^(orderbc+1));
n<7#?X7
ki=1+kfactor*(z1^(orderbc+1)-z2^(orderbc+1));
W K#lE&V3
facm=(2*epsr*epsz*ki-sigma*dt);
uH]n/Kv1,
facp=(2*epsr*epsz*ki+sigma*dt);
=,I,K=+_x
;w?zmj<Dm
C5ez(:,:,k)=facp;
kX{c+qHM
C5ez(:,:,ke_tot-k+1)=facp;
U %Aj~K^b
C6ez(:,:,k)=facm;
4qjY,QJ
C6ez(:,:,ke_tot-k+1)=facm;
tkWWR%c"
D1hy(:,:,k)=facm/facp;
<;x+?j
D1hy(:,:,ke_tot-k+1)=facm/facp;
KhZ'Ic[vw
D2hy(:,:,k)=2*epsr*epsz*dt/facp;
~s{$&N
D2hy(:,:,ke_tot-k+1)=2*epsr*epsz*dt/facp;
+bd/*^
D3hx(:,:,k)=facm/facp;
R+Ke|C
D3hx(:,:,ke_tot-k+1)=facm/facp;
!.iA^D//]
D4hx(:,:,k)=1/facp/mur/muz;
"P< drz<
D4hx(:,:,ke_tot-k+1)=1/facp/mur/muz;
}6eWdm!B
J?5O2n
% Coefficients for field components on the grid cell boundary
|mrAvm}
z1=(upml-k+1.5)*delta;
E/_=0t
z2=(upml-k+0.5)*delta;
c*!bT$]~\
sigma=sigfactor*(z1^(orderbc+1)-z2^(orderbc+1));
f7XmVCz1
ki=1+kfactor*(z1^(orderbc+1)-z2^(orderbc+1));
<acAc2
facm=(2*epsr*epsz*ki-sigma*dt);
FFtj5e
facp=(2*epsr*epsz*ki+sigma*dt);
kaUH#;c>_
[HIg\N$I8C
C1ey(:,:,k)=facm/facp;
0;e>kz3o
C1ey(:,:,kh_tot-k+1)=facm/facp;
G <m{ o
C2ey(:,:,k)=2*epsr*epsz*dt/facp;
&&[j/d}J
C2ey(:,:,kh_tot-k+1)=2*epsr*epsz*dt/facp;
xJ%b<y{@
C3ex(:,:,k)=facm/facp;
dvsOJj/b
C3ex(:,:,kh_tot-k+1)=facm/facp;
a +*|P
C4ex(:,:,k)=1/facp/epsr/epsz;
~J"*ahl
C4ex(:,:,kh_tot-k+1)=1/facp/epsr/epsz;
yA(H=L-=!1
D5hz(:,:,k)=facp;
%Q}#x
D5hz(:,:,kh_tot-k+1)=facp;
<s-_ieW'
D6hz(:,:,k)=facm;
O>w$
D6hz(:,:,kh_tot-k+1)=facm;
LP_!g
=bf-+gZD
end
>'Nrvy%&0
)T?w,"kI
% PEC walls
9ZG.%+l
%C1ey(:,:,1)=-1;
NK*~UePy
%C1ey(:,:,kh_tot)=-1;
$K\\8$Z
C2ey(:,:,1)=0;
\rADwZm
C2ey(:,:,kh_tot)=0;
7P]_03
C3ex(:,:,1)=-1;
Old5E&
C3ex(:,:,kh_tot)=-1;
y{K~g<VL
C4ex(:,:,1)=0;
=g/K>B
C4ex(:,:,kh_tot)=0;
.he%a3e
2c!?!:s
%figure
34]f[jJ|
%set(gcf,'DoubleBuffer','on')
^l_W9s
I2|iqbX40Q
%***********************************************************************
/5suyM=U
% Begin time stepping loop
" S#0QH%5
%***********************************************************************
{Ca#{LeLk
sKjg)3Sl
for n=1:nmax
ykl./uY'
ksm=<I"C
% Update magnetic field
E'Egc4Z2=l
bstore=bx;
^5u}
bx(2:ie_tot,:,:)=D1hx(2:ie_tot,:,:).* bx(2:ie_tot,:,:)-...
*;+lF
D2hx(2:ie_tot,:,:).*((ez(2:ie_tot,2:jh_tot,:)-ez(2:ie_tot,1:je_tot,:))-...
w{K_+}fAC
(ey(2:ie_tot,:,2:kh_tot)-ey(2:ie_tot,:,1:ke_tot)))./delta;
jbC7U9t7
hx(2:ie_tot,:,:)= D3hx(2:ie_tot,:,:).*hx(2:ie_tot,:,:)+...
)e9(&y*o
D4hx(2:ie_tot,:,:).*(D5hx(2:ie_tot,:,:).*bx(2:ie_tot,:,:)-...
|,t#Au}61
D6hx(2:ie_tot,:,:).*bstore(2:ie_tot,:,:));
&hd+x5
bstore=by;
R$(,~~MH
by(:,2:je_tot,:)=D1hy(:,2:je_tot,:).* by(:,2:je_tot,:)-...
Z'WoChjM
D2hy(:,2:je_tot,:).*((ex(:,2:je_tot,2:kh_tot)-ex(:,2:je_tot,1:ke_tot))-...
|;{wy
(ez(2:ih_tot,2:je_tot,:)-ez(1:ie_tot,2:je_tot,:)))./delta;
]t7<$L
hy(:,2:je_tot,:)= D3hy(:,2:je_tot,:).*hy(:,2:je_tot,:)+...
u;~/B[
D4hy(:,2:je_tot,:).*(D5hy(:,2:je_tot,:).*by(:,2:je_tot,:)-...
1>57rx"l
D6hy(:,2:je_tot,:).*bstore(:,2:je_tot,:));
X,x{!
bstore=bz;
!K(0)~u
bz(:,:,2:ke_tot)=D1hz(:,:,2:ke_tot).* bz(:,:,2:ke_tot)-...
T\8|Q@
D2hz(:,:,2:ke_tot).*((ey(2:ih_tot,:,2:ke_tot)-ey(1:ie_tot,:,2:ke_tot))-...
y| @[?B
(ex(:,2:jh_tot,2:ke_tot)-ex(:,1:je_tot,2:ke_tot)))./delta;
%S.R@C[3
hz(:,:,2:ke_tot)= D3hz(:,:,2:ke_tot).*hz(:,:,2:ke_tot)+...
b V;R}3)
D4hz(:,:,2:ke_tot).*(D5hz(:,:,2:ke_tot).*bz(:,:,2:ke_tot)-...
$+S'Boo
D6hz(:,:,2:ke_tot).*bstore(:,:,2:ke_tot));
6!Ji-'\"
im%'S6_X4
% Update electric field
&bs/a]?Z7
dstore=dx;
$C(}
dx(:,2:je_tot,2:ke_tot)=C1ex(:,2:je_tot,2:ke_tot).* dx(:,2:je_tot,2:ke_tot)+...
C#>c(-p>RC
C2ex(:,2:je_tot,2:ke_tot).*((hz(:,2:je_tot,2:ke_tot)-hz(:,1:je_tot-1,2:ke_tot))-...
"+&|$*
(hy(:,2:je_tot,2:ke_tot)-hy(:,2:je_tot,1:ke_tot-1)))./delta;
+UHf&i/3
ex(:,2:je_tot,2:ke_tot)=C3ex(:,2:je_tot,2:ke_tot).*ex(:,2:je_tot,2:ke_tot)+...
0l^-[jK)
C4ex(:,2:je_tot,2:ke_tot).*(C5ex(:,2:je_tot,2:ke_tot).*dx(:,2:je_tot,2:ke_tot)-...
aQ]C`9k
C6ex(:,2:je_tot,2:ke_tot).*dstore(:,2:je_tot,2:ke_tot));
WK/Byd.Z
dstore=dy;
`<y2l94tL
dy(2:ie_tot,:,2:ke_tot)=C1ey(2:ie_tot,:,2:ke_tot).* dy(2:ie_tot,:,2:ke_tot)+...
$0D]d.w=
C2ey(2:ie_tot,:,2:ke_tot).*((hx(2:ie_tot,:,2:ke_tot)-hx(2:ie_tot,:,1:ke_tot-1))-...
R(r89bTQ
(hz(2:ie_tot,:,2:ke_tot)-hz(1:ie_tot-1,:,2:ke_tot)))./delta;
E;D9S
ey(2:ie_tot,:,2:ke_tot)=C3ey(2:ie_tot,:,2:ke_tot).*ey(2:ie_tot,:,2:ke_tot)+...
O)`R)MQ)
C4ey(2:ie_tot,:,2:ke_tot).*(C5ey(2:ie_tot,:,2:ke_tot).*dy(2:ie_tot,:,2:ke_tot)-...
yWFDGk
C6ey(2:ie_tot,:,2:ke_tot).*dstore(2:ie_tot,:,2:ke_tot));
ph%/;?wY
dstore=dz;
XLg6?Nu
dz(2:i ..
QF'N8Kla
1/6 G&RB
未注册仅能浏览
部分内容
,查看
全部内容及附件
请先
登录
或
注册
共
条评分
离线
funnyhaha
UID :16429
注册:
2008-08-05
登录:
2015-03-17
发帖:
173
等级:
积极交流四级
1楼
发表于: 2009-04-20 09:01:25
在代码里找 PEC WALL,系数的定义,决定边界E场为0。
共
1
条评分
gwzhao
技术分
+1
积极参与讨论+技术分 论坛感谢您的参与
2009-04-20
离线
vincentwl
UID :15476
注册:
2008-07-16
登录:
2015-06-24
发帖:
189
等级:
八级仿真大师
2楼
发表于: 2009-04-20 22:39:00
这里的PEC边界不需要在迭代公式里写,因为不需要更新边界上的场 设置了PEC边界后 在后边的迭代自动产生作用 注意迭代的起止坐标
=MDir$1Z
[tsi8r=T
新手 请指教
共
1
条评分
gwzhao
技术分
+1
积极参与讨论+技术分 论坛感谢您的参与
2009-04-21
http://www.meta-materials.com/
离线
yangjun3302
UID :37159
注册:
2009-07-12
登录:
2024-05-04
发帖:
295
等级:
仿真三级
3楼
发表于: 2009-09-21 19:31:19
回 楼主(wuzjian@126) 的帖子
这个程序的吸收效果好吗?调试了下好像吸收效果不怎么好?
共
条评分
离线
colbertli
UID :40755
注册:
2009-09-03
登录:
2011-05-25
发帖:
111
等级:
仿真二级
4楼
发表于: 2009-09-25 16:16:45
谢谢分享啊
共
条评分
走自己的路,留点印子,让别人不会迷路~~
发帖
回复