登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
时域有限差分法 FDTD
>
3-D FDTD code with UPML absorbing boundary conditions
发帖
回复
6540
阅读
4
回复
[
求助
]
3-D FDTD code with UPML absorbing boundary conditions
离线
wuzjian@126
UID :20979
注册:
2008-11-07
登录:
2009-05-18
发帖:
44
等级:
仿真新人
0楼
发表于: 2009-04-19 21:43:51
%***********************************************************************
{hlT`K
% 3-D FDTD code with UPML absorbing boundary conditions
+#^sy>
%***********************************************************************
|^ 2rtI
%
p)K9ZI
% Program author: Keely J. Willis, Graduate Student
aE%eJ)+K
% UW Computational Electromagnetics Laboratory
?3.(Vqwog
% Director: Susan C. Hagness
!pG+Ak?
% Department of Electrical and Computer Engineering
{vf+sf^^q
% University of Wisconsin-Madison
/e;e\k_}'
% 1415 Engineering Drive
i!s~kk
% Madison, WI 53706-1691
2nG{>,#C:O
%
kjwillis@wisc.edu
?v0A/68s#
%
K<Yn_G
% Copyright 2005
50}.Xm@,BO
%
4W[AXDS
% This MATLAB M-file implements the finite-difference time-domain
m$j n5:
% solution of Maxwell's curl equations over a three-dimensional
d#X&Fi
% Cartesian space lattice comprised of uniform cubic grid cells.
B:.;,@r]
%
#L|JkBia
% The dimensions of the computational domain are 8.2 cm
Y*]l|)a6_]
% (x-direction), 3.4 cm (y-direction), and 3.2 cm (z-direction).
5q0BG!A%T
% The grid is terminated with UPML absorbing boundary conditions.
wghFGHgw
%
h v;n[
% An electric current source comprised of two collinear Jz components
~gSF@tz@
% (realizing a Hertzian dipole) excites a radially propagating wave.
dqIZ#;:g
% The current source is located in the center of the grid. The
uzat."`d'
% source waveform is a differentiated Gaussian pulse given by
# |[`1
% J(t)=J0*(t-t0)*exp(-(t-t0)^2/tau^2),
48R]\B<R{
% where tau=50 ps. The FWHM spectral bandwidth of this zero-dc-
COxZ Q
% content pulse is approximately 7 GHz. The grid resolution
AAeQ- nbP
% (dx = 2 mm) was chosen to provide at least 10 samples per
IM l9\U
% wavelength up through 15 GHz.
vE^h}~5U
%
xCDA1y;j
% To execute this M-file, type "fdtd3D_UPML" at the MATLAB prompt.
Qi(e`(,'
%
2@"0}po#
% This code has been tested in the following Matlab environments:
>w%d'e$
% Matlab version 6.1.0.450 Release 12.1 (May 18, 2001)
'LtgA|c=
% Matlab version 6.5.1.199709 Release 13 Service Pack 1 (August 4, 2003)
e'}ePvN
% Matlab version 7.0.0.19920 R14 (May 6, 2004)
9q@z[+X
% Matlab version 7.0.1.24704 R14 Service Pack 1 (September 13, 2004)
l}U~I 3}).
% Matlab version 7.0.4.365 R14 Service Pack 2 (January 29, 2005)
(cPeee%Q
%
J)#59a
% Note: if you are using Matlab version 6.x, you may wish to make
_OyP>|L'
% one or more of the following modifications to this code:
hfl%r9o
% --uncomment line numbers 485 and 486
5`OK-
% --comment out line numbers 552 and 561
;EE{~
%
1t~S3Q||>]
%***********************************************************************
n.;5P {V1
x= vE&9_u
clear
,qBnqi[
uFA|rX
%***********************************************************************
PHe~{"|d?
% Fundamental constants
/j=DC9_
%***********************************************************************
. }-@;:yh
-eSPoZ
cc=2.99792458e8;
XL"v21X
muz=4.0*pi*1.0e-7;
H|UV+Q0,
epsz=1.0/(cc*cc*muz);
z=- 8iks|
etaz=sqrt(muz/epsz);
/ h2*$
%l9WZ*yZ`2
%***********************************************************************
~T;ajvJ
% Material parameters
` $QzTv
%***********************************************************************
Zu [?'
!."%M^J
mur=1.0;
7(nz<z p
epsr=1.0;
pw(U< )
eta=etaz*sqrt(mur/epsr);
Up1$xLSl
3 cV+A]i
%***********************************************************************
5 b#" G"
% Grid parameters
2V=FWuXC"
%
: .FfE
% Each grid size variable name describes the number of sampled points
5VoOJ_hq
% for a particular field component in the direction of that component.
&VZmP5Gv
% Additionally, the variable names indicate the region of the grid
yNb#Ia
% for which the dimension is relevant. For example, ie_tot is the
)Rm 'YmO
% number of sample points of Ex along the x-axis in the total
eNlF2M
% computational grid, and jh_bc is the number of sample points of Hy
#%}u8\q
% along the y-axis in the y-normal UPML regions.
p;c_<>ws-Y
%
~L4*b*W
%***********************************************************************
7 ~%
&K}(A{
ie=41; % Size of main grid
Nd]%ati?
je=17;
W?4&lC^G
ke=16;
Jnu}{^~
ih=ie+1;
h~=\/vF
jh=je+1;
jl 30\M7
kh=ke+1;
{Vt^Xc
"p6:ekw
upml=10; % Thickness of PML boundaries
#1,>Qnl
ih_bc=upml+1;
/v|68x6
jh_bc=upml+1;
lO5gkOJ?
kh_bc=upml+1;
8KGv?^M 6W
TS~Y\Cp
ie_tot=ie+2*upml; % Size of total computational domain
Ztpm_P6
je_tot=je+2*upml;
x1 &b@u
ke_tot=ke+2*upml;
9$4/frd
ih_tot=ie_tot+1;
]Gi+Z1q
jh_tot=je_tot+1;
Hc_hO
kh_tot=ke_tot+1;
!Xv2PdP
.SKNIct M
is=round(ih_tot/2); % Location of z-directed current source
aQym= 6%e
js=round(jh_tot/2);
twJ|Jmd
ks=round(ke_tot/2);
]<o.aMdV
X-;Qorb^
%***********************************************************************
j4 &
% Fundamental grid parameters
FRJ:ym=E
%***********************************************************************
t3yQ/
M~g~LhsF
delta=0.002;
J*6n6
dt=delta*sqrt(epsr*mur)/(2.0*cc);
_nIqy&<
nmax=100;
k_|v)\4B
]B-$p p
%***********************************************************************
3 DO$^JJ.
% Differentiated Gaussian pulse excitation
JK^B +.
%***********************************************************************
2A18hP`^
B3g82dm
rtau=50.0e-12;
rz%[o,s
tau=rtau/dt;
]%Q]C 8[C
ndelay=3*tau;
9B?t3:
J0=-1.0*epsz;
[/fwt!
>1)@n3. <O
%***********************************************************************
1X!f!0=g+
% Initialize field arrays
^&Rxui
%***********************************************************************
w Ycz\uV
Dry;$C}P
ex=zeros(ie_tot,jh_tot,kh_tot);
\aJ-q?=
ey=zeros(ih_tot,je_tot,kh_tot);
r{6B+3J
ez=zeros(ih_tot,jh_tot,ke_tot);
LPm# 3U
dx=zeros(ie_tot,jh_tot,kh_tot);
D0E"YEo\nv
dy=zeros(ih_tot,je_tot,kh_tot);
/PB3^d>Q2
dz=zeros(ih_tot,jh_tot,ke_tot);
7&;jje[ <g
Z+h70,|
hx=zeros(ih_tot,je_tot,ke_tot);
:v WYII7
hy=zeros(ie_tot,jh_tot,ke_tot);
p*W ZY=Q
hz=zeros(ie_tot,je_tot,kh_tot);
.KwuhmR
bx=zeros(ih_tot,je_tot,ke_tot);
P20]>Hg
by=zeros(ie_tot,jh_tot,ke_tot);
[&O:qaD^
bz=zeros(ie_tot,je_tot,kh_tot);
&Ow?Hd0
l_q>(FoqA
%***********************************************************************
^?S@v1~7d
% Initialize update coefficient arrays
]rX?n
%***********************************************************************
?/|@ #&
$=QGua V
C1ex=zeros(size(ex));
U~B}vt
C2ex=zeros(size(ex));
i&s=!`
C3ex=zeros(size(ex));
5 1CU@1Ie
C4ex=zeros(size(ex));
|@Idf`N$
C5ex=zeros(size(ex));
w]5f3CIm
C6ex=zeros(size(ex));
@,>=X:7
J^+$L"K
C1ey=zeros(size(ey));
ptc H>wM!
C2ey=zeros(size(ey));
C&s }m0R
C3ey=zeros(size(ey));
glKs8^W
C4ey=zeros(size(ey));
%OfDTs
C5ey=zeros(size(ey));
@ !O&b%8X%
C6ey=zeros(size(ey));
KHs{/
tx&U"]
C1ez=zeros(size(ez));
[k&s!Qp
C2ez=zeros(size(ez));
z1@sEfk>
C3ez=zeros(size(ez));
]JCB^)tM
C4ez=zeros(size(ez));
@vYN7
C5ez=zeros(size(ez));
J-%PyvK$?
C6ez=zeros(size(ez));
Tdmo'"m8z_
[,szx1
D1hx=zeros(size(hx));
.Zo9^0`C
D2hx=zeros(size(hx));
(!&O4C5
D3hx=zeros(size(hx));
jv#" vQ9A]
D4hx=zeros(size(hx));
Sy0s`\[
D5hx=zeros(size(hx));
'N5r2JL[w
D6hx=zeros(size(hx));
4[V6so 0
<+1w'-
D1hy=zeros(size(hy));
rgvc5p
D2hy=zeros(size(hy));
F>_lp,G
D3hy=zeros(size(hy));
]!Aze^7;
D4hy=zeros(size(hy));
*,*:6^t
D5hy=zeros(size(hy));
=iN_Ug+
D6hy=zeros(size(hy));
M(]|}%
o)'=D(
D1hz=zeros(size(hz));
u1|Y;*
D2hz=zeros(size(hz));
2T2#HP
D3hz=zeros(size(hz));
~\s &]L
D4hz=zeros(size(hz));
$O</akn;
D5hz=zeros(size(hz));
#uw*8&%0
D6hz=zeros(size(hz));
O/r<VTOp
rM~IF+f0XD
%***********************************************************************
wb Tg
% Update coefficients, as described in Section 7.8.2.
s8I77._s
%
D~ `YRbv
% In order to simplify the update equations used in the time-stepping
+?m=f}>W1
% loop, we implement UPML update equations throughout the entire
9(evHR7
% grid. In the main grid, the electric-field update coefficients of
yar IR|
% Equations 7.91a-f and the correponding magnetic field update
~x^+OXf!^g
% coefficients extracted from Equations 7.89 and 7.90 are simplified
/z- C :k\
% for the main grid (free space) and calculated below.
= {DB
%
S0QU@e
%***********************************************************************
$6?KH7lA
"BNmpP
C1=1.0;
pS)X\Xyw
C2=dt;
C00*X[p
C3=1.0;
Bma|!p{
C4=1.0/2.0/epsr/epsr/epsz/epsz;
?(L?X&)v
C5=2.0*epsr*epsz;
h|>n3-k|p
C6=2.0*epsr*epsz;
*Lk&@(
9NoPrR=x1
D1=1.0;
:Y?08/V
D2=dt;
zm S-s\$,
D3=1.0;
DmpJzHj|
D4=1.0/2.0/epsr/epsz/mur/muz;
7a.#F]`
D5=2.0*epsr*epsz;
JI; i1@|b
D6=2.0*epsr*epsz;
^@w1Z{:
?*5l}y=
%***********************************************************************
P>,D$-3
% Initialize main grid update coefficients
3&d+U)E
%***********************************************************************
xupdjT%4
}sNZQ89V*v
C1ex(:,jh_bc:jh_tot-upml,:)=C1;
=&G|} M
C2ex(:,jh_bc:jh_tot-upml,:)=C2;
S5 oHe4#89
C3ex(:,:,kh_bc:kh_tot-upml)=C3;
#7:9XID /
C4ex(:,:,kh_bc:kh_tot-upml)=C4;
WaK{/6?T,
C5ex(ih_bc:ie_tot-upml,:,:)=C5;
c+M@{EbuN
C6ex(ih_bc:ie_tot-upml,:,:)=C6;
}8KL]11b
gwjv&.T6^
C1ey(:,:,kh_bc:kh_tot-upml)=C1;
L=Jk"qWV0
C2ey(:,:,kh_bc:kh_tot-upml)=C2;
=,;3z/k%
C3ey(ih_bc:ih_tot-upml,:,:)=C3;
K<9MK>T
C4ey(ih_bc:ih_tot-upml,:,:)=C4;
kK6>>lD'
C5ey(:,jh_bc:je_tot-upml,:)=C5;
[0 f6uIF
C6ey(:,jh_bc:je_tot-upml,:)=C6;
aj-uk(r
Xwq2;Bq
C1ez(ih_bc:ih_tot-upml,:,:)=C1;
0<Y&2<v
C2ez(ih_bc:ih_tot-upml,:,:)=C2;
ba1QFzN
C3ez(:,jh_bc:jh_tot-upml,:)=C3;
NP(?[W
C4ez(:,jh_bc:jh_tot-upml,:)=C4;
30v1VLR_)
C5ez(:,:,kh_bc:ke_tot-upml)=C5;
{7s zo`U2
C6ez(:,:,kh_bc:ke_tot-upml)=C6;
x};g!FYfkB
CxN@g'
D1hx(:,jh_bc:je_tot-upml,:)=D1;
}pZnWK+
D2hx(:,jh_bc:je_tot-upml,:)=D2;
}Nc!8'@
D3hx(:,:,kh_bc:ke_tot-upml)=D3;
8l,hP .
D4hx(:,:,kh_bc:ke_tot-upml)=D4;
F(n))`(
D5hx(ih_bc:ih_tot-upml,:,:)=D5;
_)H+..=
D6hx(ih_bc:ih_tot-upml,:,:)=D6;
aRKG)0=
/r{5Lyk*
D1hy(:,:,kh_bc:ke_tot-upml)=D1;
TKydOw@P"
D2hy(:,:,kh_bc:ke_tot-upml)=D2;
yBjWPx?
D3hy(ih_bc:ie_tot-upml,:,:)=D3;
g}j>;T
D4hy(ih_bc:ie_tot-upml,:,:)=D4;
(NV=YX?s
D5hy(:,jh_bc:jh_tot-upml,:)=D5;
'WgwLE_
D6hy(:,jh_bc:jh_tot-upml,:)=D6;
n>+W]I&E
[5:7WqB
D1hz(ih_bc:ie_tot-upml,:,:)=D1;
PvCE}bY{}
D2hz(ih_bc:ie_tot-upml,:,:)=D2;
lGgKzi9VD
D3hz(:,jh_bc:je_tot-upml,:)=D3;
'(:J|DN
D4hz(:,jh_bc:je_tot-upml,:)=D4;
-~aEqj#?
D5hz(:,:,kh_bc:kh_tot-upml)=D5;
`^h##WaXap
D6hz(:,:,kh_bc:kh_tot-upml)=D6;
x%7x^]$
Nfvg[c
%***********************************************************************
m1Z8SM+
% Fill in PML regions
.Bn2;nO
%
kqB00 ;
% PML theory describes a continuous grading of the material properties
Yx/~8K_%M?
% over the PML region. In the FDTD grid it is necessary to discretize
{v'Fg
% the grading by averaging the material properties over a grid cell
qUg4-Z4
% width centered on each field component. As an example of the
8LKZ3Y|
% implementation of this averaging, we take the integral of the
9r*T3=u.S
% continuous sigma(x) in the PML region
;lt;]7
%
[uV/ Ra*g
% sigma_i = integral(sigma(x))/delta
VDN]P3
%
~ ?_Z!eS
% where the integral is over a single grid cell width in x, and is
5Rp2O4Z
% bounded by x1 and x2. Applying this to the polynomial grading of
a5S/ O;ry
% Equation 7.60a produces
zNs8\
%
bW3o%srxa
% sigma_i = (x2^(m+1)-x1^(m+1))*sigmam/(delta*(m+1)*d^m)
TzXl ?N
%
v wD(J.;
% where sigmam is the maximum value of sigma as described by Equation
N4NH)x
% 7.62.
3c6)
%
k/Ro74f=
% The definitions of x1 and x2 depend on the position of the field
daNIP1Qn
% component within the grid cell. We have either
LA Vgf>
%
ar}759
% x1 = (i-0.5)*delta, x2 = (i+0.5)*delta
![n`n(oN
%
c?Qg:yU
% or
_n gMC]-T
%
Om~C0
% x1 = (i)*delta, x2 = (i+1)*delta
SSC!BcC1
%
o~>go_Y
% where i varies over the PML region.
,i.P= o
%
RuuU}XQ
%***********************************************************************
{q4"x5|
'2#fkH[.
rmax=exp(-16); %desired reflection error, designated as R(0) in Equation 7.62
j!H?dnE||
AVZ@?aJgF
orderbc=4; %order of the polynomial grading, designated as m in Equation 7.60a,b
=h!m/f^x
9R3=h5Y
% x-varying material properties
o%5Ao?z~
delbc=upml*delta;
e.H"!X!0#H
sigmam=-log(rmax)*(orderbc+1.0)/(2.0*eta*delbc);
FvP1;E
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1.0));
RO8Ynm2 <
kmax=1;
;OyM~T gI
kfactor=(kmax-1.0)/delta/(orderbc+1.0)/delbc^orderbc;
DF =.G1
l<6/ADuS
for i=1:upml
M 4?3l
%>z}P&Yz
% Coefficients for field components in the center of the grid cell
L *@>/N
x1=(upml-i+1)*delta;
)Me&xQTn
x2=(upml-i)*delta;
p}z0(lQ*~
sigma=sigfactor*(x1^(orderbc+1)-x2^(orderbc+1));
=@MKU
ki=1+kfactor*(x1^(orderbc+1)-x2^(orderbc+1));
Pl6=._
facm=(2*epsr*epsz*ki-sigma*dt);
sl 5wX
facp=(2*epsr*epsz*ki+sigma*dt);
,:,|A/U
~h.B\Sc]Q
C5ex(i,:,:)=facp;
96j2D8=w
C5ex(ie_tot-i+1,:,:)=facp;
s1q d/
C6ex(i,:,:)=facm;
4v .6_ebL
C6ex(ie_tot-i+1,:,:)=facm;
\59hW%Di
D1hz(i,:,:)=facm/facp;
:b-(@a7>
D1hz(ie_tot-i+1,:,:)=facm/facp;
lEs/_f3;A
D2hz(i,:,:)=2.0*epsr*epsz*dt/facp;
ZQ/5]]}3y
D2hz(ie_tot-i+1,:,:)=2.0*epsr*epsz*dt/facp;
pn|{P<b\
D3hy(i,:,:)=facm/facp;
\/Y<.#?_
D3hy(ie_tot-i+1,:,:)=facm/facp;
8hT>)WH}wo
D4hy(i,:,:)=1.0/facp/mur/muz;
(*]Y<ve
D4hy(ie_tot-i+1,:,:)=1.0/facp/mur/muz;
jL1UPN
DdgFBO
% Coefficients for field components on the grid cell boundary
tDkqwF),
x1=(upml-i+1.5)*delta;
(*tJCz`Sj
x2=(upml-i+0.5)*delta;
t|lv6-Hy9
sigma=sigfactor*(x1^(orderbc+1)-x2^(orderbc+1));
_,Y79 b6
ki=1.0+kfactor*(x1^(orderbc+1)-x2^(orderbc+1));
W&#Nk5d
facm=(2.0*epsr*epsz*ki-sigma*dt);
39CPFgi<l*
facp=(2.0*epsr*epsz*ki+sigma*dt);
w6 .HvH-@?
4|thDb)]
C1ez(i,:,:)=facm/facp;
7h~M&\M
C1ez(ih_tot-i+1,:,:)=facm/facp;
}J`Gm
C2ez(i,:,:)=2.0*epsr*epsz*dt/facp;
kA0^~
C2ez(ih_tot-i+1,:,:)=2.0*epsr*epsz*dt/facp;
'fsOKx4Z
C3ey(i,:,:)=facm/facp;
*PPFk.#x
C3ey(ih_tot-i+1,:,:)=facm/facp;
q?\D9aT9
C4ey(i,:,:)=1.0/facp/epsr/epsz;
g!uhy}
C4ey(ih_tot-i+1,:,:)=1.0/facp/epsr/epsz;
yvvR%]!.
D5hx(i,:,:)=facp;
'l;|t"R12
D5hx(ih_tot-i+1,:,:)=facp;
/[M~##%:
D6hx(i,:,:)=facm;
\ZH=$c*W
D6hx(ih_tot-i+1,:,:)=facm;
v\C+G[MV7
7Cjrh"al"
end
J)]W[Nk
<s>SnOD
% PEC walls
7;{F"/A
C1ez(1,:,:)=-1.0;
cs)hq4-L`
C1ez(ih_tot,:,:)=-1.0;
P/5r(l5
C2ez(1,:,:)=0.0;
@P?*<b{
C2ez(ih_tot,:,:)=0.0;
{`> x"Y5
C3ey(1,:,:)=-1.0;
#96a7K
C3ey(ih_tot,:,:)=-1.0;
/_8V+@im
C4ey(1,:,:)=0.0;
#oI`j q
C4ey(ih_tot,:,:)=0.0;
kE}?"<l
i%2K%5{)$D
% y-varying material properties
F(r&:3!97
delbc=upml*delta;
fkM4u<R^
sigmam=-log(rmax)*epsr*epsz*cc*(orderbc+1.0)/(2.0*delbc);
"mA/:8` Q
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1.0));
WRCi!
kmax=1.0;
9Wn0YIc
kfactor=(kmax-1.0)/delta/(orderbc+1.0)/delbc^orderbc;
RB2u1]l
" B1' K8
for j=1:upml
cW\ 7yZh
aHw VoT
% Coefficients for field components in the center of the grid cell
uwJkqlUOz
y1=(upml-j+1)*delta;
AXFVsZH"zi
y2=(upml-j)*delta;
$fKWB5p|()
sigma=sigfactor*(y1^(orderbc+1)-y2^(orderbc+1));
{Bx\Z0+'&
ki=1+kfactor*(y1^(orderbc+1)-y2^(orderbc+1));
^.Q),{%Xo
facm=(2*epsr*epsz*ki-sigma*dt);
| Z;Av%%
facp=(2*epsr*epsz*ki+sigma*dt);
7w|s8B
-_+0[Nb.
C5ey(:,j,:)=facp;
y5I7pbe
C5ey(:,je_tot-j+1,:)=facp;
n$QFj'
C6ey(:,j,:)=facm;
6._):[_2
C6ey(:,je_tot-j+1,:)=facm;
"$_ypgRrSR
D1hx(:,j,:)=facm/facp;
2Xosj(H
D1hx(:,je_tot-j+1,:)=facm/facp;
RA}PM?D/
D2hx(:,j,:)=2*epsr*epsz*dt/facp;
81&!!qhfS
D2hx(:,je_tot-j+1,:)=2*epsr*epsz*dt/facp;
`XQ5> c
D3hz(:,j,:)=facm/facp;
NNX/2
D3hz(:,je_tot-j+1,:)=facm/facp;
"q8wEu,z[
D4hz(:,j,:)=1/facp/mur/muz;
'J}lnt[V
D4hz(:,je_tot-j+1,:)=1/facp/mur/muz;
eYFCf;
G>j/d7
% Coefficients for field components on the grid cell boundary
KH-.Z0 2U
y1=(upml-j+1.5)*delta;
|Cm}%sgR\0
y2=(upml-j+0.5)*delta;
W+vm!7wX0
sigma=sigfactor*(y1^(orderbc+1)-y2^(orderbc+1));
We|*s2!
ki=1+kfactor*(y1^(orderbc+1)-y2^(orderbc+1));
Z:}^fZP
facm=(2*epsr*epsz*ki-sigma*dt);
|j;`;"+B
facp=(2*epsr*epsz*ki+sigma*dt);
Oqyh{q%]
<[Vr(.A
C1ex(:,j,:)=facm/facp;
PNq#o%q
C1ex(:,jh_tot-j+1,:)=facm/facp;
8eNGPuoL)
C2ex(:,j,:)=2*epsr*epsz*dt/facp;
U4gZW]F
C2ex(:,jh_tot-j+1,:)=2*epsr*epsz*dt/facp;
Rp#SqRy`
C3ez(:,j,:)=facm/facp;
ts ] +W!:
C3ez(:,jh_tot-j+1,:)=facm/facp;
Tn|reXc0e
C4ez(:,j,:)=1/facp/epsr/epsz;
B(~D*H2T[
C4ez(:,jh_tot-j+1,:)=1/facp/epsr/epsz;
-Ac^#/[0
D5hy(:,j,:)=facp;
b\?`721BG
D5hy(:,jh_tot-j+1,:)=facp;
Ua4} dW[w
D6hy(:,j,:)=facm;
4d O>L"
D6hy(:,jh_tot-j+1,:)=facm;
r*Mm5QozA
&nq[Vy0kO4
end
iZUBw
Uvp?HZ\Z
% PEC walls
O3Uu{'=0
C1ex(:,1,:)=-1;
.s+e hZ
C1ex(:,jh_tot,:)=-1;
LxbVRw
C2ex(:,1,:)=0;
F]&9Lp} "
C2ex(:,jh_tot,:)=0;
P VPwYmte
C3ez(:,1,:)=-1;
shD$,! k
C3ez(:,jh_tot,:)=-1;
wBf bpoE7
C4ez(:,1,:)=0;
*UTk. :G5
C4ez(:,jh_tot,:)=0;
xnArYm
V}( "8L
% z-varying material properties
ZISR]xay
delbc=upml*delta;
{VFpfo
sigmam=-log(rmax)*epsr*epsz*cc*(orderbc+1)/(2*delbc);
V:lDR20*\
sigfactor=sigmam/(delta*(delbc^orderbc)*(orderbc+1));
aaBBI S
kmax=1;
"H({kmR
kfactor=(kmax-1)/delta/(orderbc+1)/delbc^orderbc;
ny}?+&K
5v]xk?Eb
for k=1:upml
oq|K:<l
nv={.H
% Coefficients for field components in the center of the grid cell
,i}"e(f
z1=(upml-k+1)*delta;
[4gv_g
z2=(upml-k)*delta;
>U17BGJ.
sigma=sigfactor*(z1^(orderbc+1)-z2^(orderbc+1));
|D\ ukml
ki=1+kfactor*(z1^(orderbc+1)-z2^(orderbc+1));
8w\&QX
facm=(2*epsr*epsz*ki-sigma*dt);
T@L^RaPX
facp=(2*epsr*epsz*ki+sigma*dt);
:sf;Fq
,PB?pp8C}
C5ez(:,:,k)=facp;
`bi5#xR
C5ez(:,:,ke_tot-k+1)=facp;
_&T$0SZco
C6ez(:,:,k)=facm;
~=71){4A
C6ez(:,:,ke_tot-k+1)=facm;
/a,q4tD@
D1hy(:,:,k)=facm/facp;
|1neCP@ng
D1hy(:,:,ke_tot-k+1)=facm/facp;
N7[~Y2i
D2hy(:,:,k)=2*epsr*epsz*dt/facp;
"/q6E
D2hy(:,:,ke_tot-k+1)=2*epsr*epsz*dt/facp;
W uQdz&s>
D3hx(:,:,k)=facm/facp;
!U91
D3hx(:,:,ke_tot-k+1)=facm/facp;
EV}%D9:
D4hx(:,:,k)=1/facp/mur/muz;
yO !*pC
D4hx(:,:,ke_tot-k+1)=1/facp/mur/muz;
+ 7Z%N9
hAY_dM
% Coefficients for field components on the grid cell boundary
Gce![<|ph
z1=(upml-k+1.5)*delta;
V; ChrmE
z2=(upml-k+0.5)*delta;
DP?gozm
sigma=sigfactor*(z1^(orderbc+1)-z2^(orderbc+1));
(Lc%G~{
ki=1+kfactor*(z1^(orderbc+1)-z2^(orderbc+1));
35ng_,t$
facm=(2*epsr*epsz*ki-sigma*dt);
R\XJ
facp=(2*epsr*epsz*ki+sigma*dt);
$HaM, Oh;i
zUOYH4+
C1ey(:,:,k)=facm/facp;
?HW*qD#k
C1ey(:,:,kh_tot-k+1)=facm/facp;
%T&kK2d;
C2ey(:,:,k)=2*epsr*epsz*dt/facp;
L U7.
C2ey(:,:,kh_tot-k+1)=2*epsr*epsz*dt/facp;
I?1^\s#L
C3ex(:,:,k)=facm/facp;
{5,CW
C3ex(:,:,kh_tot-k+1)=facm/facp;
n9#@ e}r
C4ex(:,:,k)=1/facp/epsr/epsz;
Dx8^V%b
C4ex(:,:,kh_tot-k+1)=1/facp/epsr/epsz;
Q>|<R[.7
D5hz(:,:,k)=facp;
u}pLO9V"`
D5hz(:,:,kh_tot-k+1)=facp;
-1@kt<Es
D6hz(:,:,k)=facm;
Ay{4R
D6hz(:,:,kh_tot-k+1)=facm;
:5dq<>~
0g1uM:;
end
myPo&"_ x
u+ -}|
% PEC walls
!#'*@a
%C1ey(:,:,1)=-1;
iM\W"OUl[
%C1ey(:,:,kh_tot)=-1;
R8mL|Vb|
C2ey(:,:,1)=0;
1PWDK1GI8
C2ey(:,:,kh_tot)=0;
U+\\#5$
C3ex(:,:,1)=-1;
0s(G*D2%6
C3ex(:,:,kh_tot)=-1;
v +7<}
C4ex(:,:,1)=0;
7,:QFV
C4ex(:,:,kh_tot)=0;
S -im o
lwV#j}G
%figure
ETmfy}V8
%set(gcf,'DoubleBuffer','on')
LEY$St
?O28Q DUI
%***********************************************************************
\=w|Zeu{l
% Begin time stepping loop
|kjk{
%***********************************************************************
G=wJz
}^=J]
for n=1:nmax
Cjw|.c`
AH ;h#dT
% Update magnetic field
w|N LK
bstore=bx;
NZv1dy`fa
bx(2:ie_tot,:,:)=D1hx(2:ie_tot,:,:).* bx(2:ie_tot,:,:)-...
WXJ%bH
D2hx(2:ie_tot,:,:).*((ez(2:ie_tot,2:jh_tot,:)-ez(2:ie_tot,1:je_tot,:))-...
.(! $j-B
(ey(2:ie_tot,:,2:kh_tot)-ey(2:ie_tot,:,1:ke_tot)))./delta;
0(]C$*~mk
hx(2:ie_tot,:,:)= D3hx(2:ie_tot,:,:).*hx(2:ie_tot,:,:)+...
1Ztoj}!I
D4hx(2:ie_tot,:,:).*(D5hx(2:ie_tot,:,:).*bx(2:ie_tot,:,:)-...
vzfWPjpKW
D6hx(2:ie_tot,:,:).*bstore(2:ie_tot,:,:));
Mq-;sPsFP
bstore=by;
>1W)J3
by(:,2:je_tot,:)=D1hy(:,2:je_tot,:).* by(:,2:je_tot,:)-...
{`{U\w5Af
D2hy(:,2:je_tot,:).*((ex(:,2:je_tot,2:kh_tot)-ex(:,2:je_tot,1:ke_tot))-...
+"Ka #Z
(ez(2:ih_tot,2:je_tot,:)-ez(1:ie_tot,2:je_tot,:)))./delta;
1;>J9
hy(:,2:je_tot,:)= D3hy(:,2:je_tot,:).*hy(:,2:je_tot,:)+...
0PZpE "$X
D4hy(:,2:je_tot,:).*(D5hy(:,2:je_tot,:).*by(:,2:je_tot,:)-...
d^w6_
D6hy(:,2:je_tot,:).*bstore(:,2:je_tot,:));
gx3arVa
bstore=bz;
qg|SBQ?6
bz(:,:,2:ke_tot)=D1hz(:,:,2:ke_tot).* bz(:,:,2:ke_tot)-...
gVb;sk^
D2hz(:,:,2:ke_tot).*((ey(2:ih_tot,:,2:ke_tot)-ey(1:ie_tot,:,2:ke_tot))-...
0DGXMO$;
(ex(:,2:jh_tot,2:ke_tot)-ex(:,1:je_tot,2:ke_tot)))./delta;
*S7<QyVh
hz(:,:,2:ke_tot)= D3hz(:,:,2:ke_tot).*hz(:,:,2:ke_tot)+...
^W;\faG
D4hz(:,:,2:ke_tot).*(D5hz(:,:,2:ke_tot).*bz(:,:,2:ke_tot)-...
/op8]y
D6hz(:,:,2:ke_tot).*bstore(:,:,2:ke_tot));
y<kW2<?
B%[Yu3gBo
% Update electric field
-_B*~M/vV`
dstore=dx;
o4U9jU4<"
dx(:,2:je_tot,2:ke_tot)=C1ex(:,2:je_tot,2:ke_tot).* dx(:,2:je_tot,2:ke_tot)+...
\\6/"
C2ex(:,2:je_tot,2:ke_tot).*((hz(:,2:je_tot,2:ke_tot)-hz(:,1:je_tot-1,2:ke_tot))-...
}s? 9Hnqa
(hy(:,2:je_tot,2:ke_tot)-hy(:,2:je_tot,1:ke_tot-1)))./delta;
+dlN^P647
ex(:,2:je_tot,2:ke_tot)=C3ex(:,2:je_tot,2:ke_tot).*ex(:,2:je_tot,2:ke_tot)+...
p?ICZg:
C4ex(:,2:je_tot,2:ke_tot).*(C5ex(:,2:je_tot,2:ke_tot).*dx(:,2:je_tot,2:ke_tot)-...
|SCO9,Fs
C6ex(:,2:je_tot,2:ke_tot).*dstore(:,2:je_tot,2:ke_tot));
G/b $cO}
dstore=dy;
)[>{ Ie2
dy(2:ie_tot,:,2:ke_tot)=C1ey(2:ie_tot,:,2:ke_tot).* dy(2:ie_tot,:,2:ke_tot)+...
h(ZZ7(ue
C2ey(2:ie_tot,:,2:ke_tot).*((hx(2:ie_tot,:,2:ke_tot)-hx(2:ie_tot,:,1:ke_tot-1))-...
kid@*.I
(hz(2:ie_tot,:,2:ke_tot)-hz(1:ie_tot-1,:,2:ke_tot)))./delta;
?8pR RzV$
ey(2:ie_tot,:,2:ke_tot)=C3ey(2:ie_tot,:,2:ke_tot).*ey(2:ie_tot,:,2:ke_tot)+...
1a`dB ~>
C4ey(2:ie_tot,:,2:ke_tot).*(C5ey(2:ie_tot,:,2:ke_tot).*dy(2:ie_tot,:,2:ke_tot)-...
rxt)l
C6ey(2:ie_tot,:,2:ke_tot).*dstore(2:ie_tot,:,2:ke_tot));
$vx]\` ^
dstore=dz;
I t",WFE.
dz(2:i ..
?3[as<GZ8
l1nrJm8
未注册仅能浏览
部分内容
,查看
全部内容及附件
请先
登录
或
注册
共
条评分
离线
funnyhaha
UID :16429
注册:
2008-08-05
登录:
2015-03-17
发帖:
173
等级:
积极交流四级
1楼
发表于: 2009-04-20 09:01:25
在代码里找 PEC WALL,系数的定义,决定边界E场为0。
共
1
条评分
gwzhao
技术分
+1
积极参与讨论+技术分 论坛感谢您的参与
2009-04-20
离线
vincentwl
UID :15476
注册:
2008-07-16
登录:
2015-06-24
发帖:
189
等级:
八级仿真大师
2楼
发表于: 2009-04-20 22:39:00
这里的PEC边界不需要在迭代公式里写,因为不需要更新边界上的场 设置了PEC边界后 在后边的迭代自动产生作用 注意迭代的起止坐标
b~{nS,_Rn
3BAQ2S}
新手 请指教
共
1
条评分
gwzhao
技术分
+1
积极参与讨论+技术分 论坛感谢您的参与
2009-04-21
http://www.meta-materials.com/
离线
yangjun3302
UID :37159
注册:
2009-07-12
登录:
2024-05-04
发帖:
295
等级:
仿真三级
3楼
发表于: 2009-09-21 19:31:19
回 楼主(wuzjian@126) 的帖子
这个程序的吸收效果好吗?调试了下好像吸收效果不怎么好?
共
条评分
离线
colbertli
UID :40755
注册:
2009-09-03
登录:
2011-05-25
发帖:
111
等级:
仿真二级
4楼
发表于: 2009-09-25 16:16:45
谢谢分享啊
共
条评分
走自己的路,留点印子,让别人不会迷路~~
发帖
回复