登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
资料库
>
Introduction to the Uniform Geometrical Theory of Diffracti ..
发帖
回复
1
2
3
4
5
6
...11
下一页
到第
页
确认
13713
阅读
105
回复
[其它]
Introduction to the Uniform Geometrical Theory of Diffraction (几何绕射)
离线
tensor
新的一年开始了!
UID :2
注册:
2006-10-04
登录:
2025-09-29
发帖:
4229
等级:
值班管理员
0楼
发表于: 2009-03-09 20:16:41
— 本帖被 casey 从 程序 移动到本区(2009-08-05) —
---------本书从2楼到11楼,共9部分. 另推荐同类中文书
向大家推荐《几何绕射理论》
(附件在此贴4楼)--------------
Oe5rRQ$O
【资料名称】:Introduction to the Uniform Geometrical Theory of Diffraction
}3 xkA
【作者】:
YBt=8`r
D.A. McNamara
J(]|)?x2
C.W.I. Pistorius
<>HtXn/
J.A.G. Malherbe
_3Eo{^
University of Pretoria
w;'XqpP$*|
【出版社】:Artech House Publishers
+?J N_aR
【页数】:488/PDF
pGs?Y81
【语言】: 英文
]8A*uyi
【发表时间】:1990-01-01
63l3WvoK
【内容摘要】:
$nt&'Xnv
CONTENTS
#9,8{ O"
CONTENTS
s= %3`3Fo
Preface xiii
]?6wU-a
xiii
q T6y&
Preface
:-?ZU4)
1
D{(}&8a9
Chapter 1 The Nature of High-Frequency Methods 1
nxZz{&
1 The Nature of High-Frequency Methods
&5W;E+Pub
Chapter
+ktv:d
1
En\@d@j<u
1.1 Introduction 1
DQ.4b
1.1 Introduction
x,gk]C f
2
u W]gBhO$O
1.2 A Brief Historical Overview 2
Y 9$jJ1V
1.2 A Brief Historical Overview
DTO_IP
1.3 High-Frequency Phenomena 5
KA2>[x2
5
|Y3w6 !$
1.3 High-Frequency Phenomena
a_b#hM/c;
References 6
od=hCQ1>
6
+[76 _EXy
References
(L(7)WbH
7
OAXA<
Chapter 2 Geometrical Optics Fields 7
Yq ]sPE92
Chapter
QuR}6C
2 Geometrical Optics Fields
I=!kPuw
7
TiD#t+g
2.1 Introduction 7
Q.N!b7r7
Introduction
5*44QV
2.2 Ray Optical Construction of the High-Frequency Field 8
/a\i
8
iT'doF
Ray Optical Construction of the High-Frequency Field
1KZigeHXI
2.2.1 Preliminary Remarks 8
;W- A2g
8
;@Zuet
2.2.1 Preliminary Remarks
)LGVR3#
8
S~ /2Bw!2
2.2.2 Some Conventional Electromagnetic Theory 8
z/\OtYz
2.2.2 Some Conventional Electromagnetic Theory
;EBKzB
10
Lm[,^k
2.2.3 The Luneberg-Kline Anticipated Solution (Ansatz)
Y(UK:LZ'
10
e]~p:
The Luneberg-Kline Anticipated Solution (Ansatz)
G_+/ e]P
2.2.3
48:xvTE?N
11
O#D{:H_dD>
2.2.4 The Eikonal Equation 11
pS$9mzY
2.2.4 The Eikonal Equation
MT!Y!*-5
15
m7^f%<l
2.2.5 Transport Equations 15
uWJJ\
2.2.5 The Transport Equations
J _rrc;F
17
6{6hz8
2.2.6 The Geometrical Optics Terms and Their Interpretation 17
JCcYFtW
2.2.6 he Geometrical Optics Terms and Their Interpretation
4X^$"lM
19
2"D4q (@
2.2.7 Ray Paths, Amplitude Functions, and Phase Functions 19
L-9fo-
Ray Paths, Amplitude Functions, and Phase Functions
k'8tcXs
2.2.7
}+@!c%TCx~
2.2.8 Sign Conventions and Caustics of the Geometrical Optics
y i$+rPF1
2.2.8 Sign Conventions and Caustics of the Geometrical Optics
rl}<&aPH
Fields
lC($@sC %
28
Ar<5UnT
28
0/v]YK.
Fields
%`i*SF(gV
33
h*R@ d
2.2.9 The Geometrical Optics Field and Fermat's Principle 33
0OO[@Ht
The Geometrical Optics Field and Format's Principle
[H*JFKpx
2.2.9
ei-\t qY_
2.3 Summary of the Properties of a High-Frequency Field and Some
|%|03}Q
Summary of the Properties of a High-Frequency Field and Some
E0!d c
Special Cases
UF-&L:s[
34
[xiqlb,8
34
,#2~<
Special Cases
3)WfBvG
37
G2|jS@L#
2.4 Specific Examples of Geometrical Optics Fields 37
PhyIea
Specific Examples of Geometrical Optics Fields
O}i+1
37
/ZyMD(_J
2.4.1 Initial Comments and Some Definitions 37
}U8v ~wcd
2.4.1 Initial Comments and Some Definitions
-=5~h
37
%,WH*")
2.4.2 Uniform Plane Wave Fields 37
FO*Gc Z
2.4.2 Uniform Plane Wave Fields
),yar9C
40
YZ>L_$:q
2.4.3 The Fields of Electric and Magnetic Line Sources 40
CHGa_
2.4.3 The Fields of Electric and Magnetic Line Sources
UOb`@#
42
;t0q ?9
2 ..
\Y!#Y#c
=\lw.59
未注册仅能浏览
部分内容
,查看
全部内容及附件
请先
登录
或
注册
共
1
条评分
cem-uestc
rf币
+5
感谢您的资料
2009-03-09
本人从事微波行业研究和教学。丰富的硬件资源和微波团队可
承接各类与微波相关的项目 QQ:546874678 EMAIL:rfeda@126.com
离线
tensor
新的一年开始了!
UID :2
注册:
2006-10-04
登录:
2025-09-29
发帖:
4229
等级:
值班管理员
1楼
发表于: 2009-03-09 20:20:37
Introduction to the Uniform Geometrical Theory of Diffraction.part09.rar
W%+02_/)
共9部分,
;:=j{,&dl[
这是第9部分,
c$1u
需要回复才能见下载地址
QqF<HCO
sN1H{W
2.4.7
G T~rr*X
Sources with Fields That Are Not Geometrical Optics or
_zDS-e@
Ray-Optic Fields
RP2$(%
2.4.8 Further Comment
1#N`elm
Reduction of Results to Two-Dimensional Ray Tubes
dlo`](5m
2.5
p^Ey6,!8]D
2.6 Rays in Lossy Media
+}m`$B}mJ
2.7 Concluding Remarks
Oey Ph9^V
A Taste of Things to Come
<*J"6x
2.8
6H0kY/quL|
Problems
O h e^{:
References
e r_6PV
Chapter
h.?<(I
3 Geometrical Optics Reflected Fields I /
Ei:m@}g
3.1 Introduction
\Yj_U'2"i
3.1.1 Initial Remarks <
X}'rPz\Lu
3.1.2
p8 S~`fjV
A Stroll in the Sun
lai@,_<GV
3.1.3
M%:\ ry4:
A Strategy for This Chapter
?xwi2<zz
The Law of Reflection, Polarization Properties, and Phase
P\dfxR;8%
3.2
dXDyY
Functions
^JxVs 7
3.2.1 The Definition of Certain Geometrical Terms and
B4un6-<i
Coordinate Systems
ED8{
3.2.2 The Law of Reflection
,$!fyi[;C
3.2.3 Trajectories of Reflected Rays
o%Q9]=%!
3.2.4 Polarization of Reflected Rays
)F hbN@3
3.2.5
9%kO%j,3
Phase Continuation along Reflected Rays
A@~9r9Uf
3.2.6
N=u( 3So
Invocation of the Locality Principle
]A[}:E 5}
3.2.7 More about Shadowing
d1#lC*.Sg
3.2.8 Geometrical Optics Surface Currents
^N7cX K*
3.2.9
YN)qMI_`A
An Alternative Interpretation of the Form of R and the
+ase>'<N#
Law of Reflection
9=}#.W3.
3.2.10 What More Do We Need?
F lVG, Z
The Expressions for the Geometrical Optics Field Reflected from
Gu{1%bb#kL
3.3
hD#Mhy5h
Smooth Conducting Surfaces: Two-Dimensional Problems
T^eD
3.3.1
gIweL{Pc
When Is a Problem of a Two-Dimensional Nature?
=,*/Ph&
3.3.2
Pjq9BK9p
Description of the Two-Dimensional Reflecting Surface
F$i50s
Geometry
)PR`irw
3.3.3 Simplifications for Two-Dimensional Problems
vV"YgN:
3.3.4
,8DC9yM,
Simplification of the Polarization Description of
~Q"qz<WO
Reflected GO Fields for Two-Dimensional Problems
b:9"nALgC
3.3.5 Amplitude Continuation along Two-Dimensional
G-D}J2r=F
Reflected Ray Tubes
BT(eU*m-
3.3.6
0<uL0FOT
The Classical Geometrical Optics Interpretation
Y|mtQE?c
3.3.7
I[A<e]uK
Summary of Reflected Field Expressions for Two-
GF@`~im
Dimensional Problems
9/8+R%
3.3.8
ih("`//nP
On the Specular Point Qr and Its Location
UHV"<9tk
3.3.9 Initial Two-Dimensional Problem Examples
lrPIXIM
3.3.10 Interpretation in Terms of Fundamental Electromagnetic
4NRj>y
Theory
}qGd*k0F0
3.3.11 Relationship to Physical Optics
UK'8cz9
3.3.12 Comments on GO Reflected Fields about Shadow
'~yxu$aK
Boundaries
X%I@4 B7Ts
3.4
`!X8Cn
Further Examples of Two-Dimensional Reflected Field Problems
qCVb-f
3.5 General Expressions for the Reflected Fields from Three-
Jm=3%H
Dimensional Smooth Conducting Surfaces
WTD86A
3.5.1 Introduction
-AL^
3.5.2
r+Sv(KS4i^
Principal Radii of Curvature of Reflected Ray Tube at
VSO(DCr"L
Q,-First Format
SIM>Lz
3.5.3 Principal Radii of Curvature of Reflected Ray Tube at
maSVq G
Qr-Second Format
Bs3&yEq(
3.5.4 Important Special Cases
}x6)}sz7
3.5.5
2 .Xx)(>
Principal Directions of the Reflected Wavefront
86KK Y2
3.5.6
v#9i|
Alternative Form for the Reflected GO Field at the
\*5z0A9)5)
Qr
k{!9f=^
Specular Point
[#aJ- Uu
3.5.7
E}zGY2Xx
Comments on the Expressions for the Reflected GO
\1?'JdN
Field
B{`K?e0
Alternative Determination of Principal Radii of
L8E4|F}
3.5.8
y:zNf?6&
Curvature of the Reflected Wavefront
j7Zv"Vq@
3.6
_TdH6[9
Examples of Three-Dimensional Reflected Field Problems
wtL=^
3.7 Concluding Remarks
f^}n#
Problems
?1|\(W#
References
sOz {spA
Chapter
|pknaz
4 Two-Dimensional Wedge Diffraction
1e9~):C~W
4.1 Introduction
Ta3* G
4.2 Diffraction by Huygens' Principle
',+Zqog92
4.3 Keller's Original GTD
/^K-tz-R
4.4
k g(}%Ih
The Uniform Theory of Diffraction
#3>jgluM'
4.4.1 Shadow Boundaries
z2R?GQ5 A
4.4.2 Two-Dimensional UTD Diffraction Coefficients
"\lOOp^-
4.4.3
',Z]w;D!G
Enforcing Continuity across the Shadow Boundaries
(uHyWEHt
4.4.4 Transition Regions
U$@}!X
4.4.5 Grazing Incidence
<D& Ep
4.4.6 Half-Plane and Curved Screen
>C{8}Lg-.
4.4.7 Continuity across the Shadow Boundary: Grazing
6*1f -IbV
Incidence
%IIFLlD
4.4.8 Full-Plane
$<VH~Q<
4.5 Slope Diffraction
m+dQBsz\
4.5 Slope Diffraction
)`<&~>qp
220
K{Nj-Rqd
4.6 General Two-Dimensional Edge Diffracted Fields
ifWQwS/,a
4.6 General Two-Dimensional Edge Diffracted Fields
lwG)&qyVd
225
,9KnC=_y
4.7 Dielectric and Impedance Wedges
Fv(FRZ)
4.7 Dielectric and Impedance Wedges
Jzp|#*~$E
227
hBz>E 4mEv
Problems
2.{zfr
Problems
I(3YXv VN
228
]T40VGJ:h
References
L;Yn q<x
References
y9T5
231
[@pumH>
Chapter 5 Applications of Two-Dimensional Wedge Diffraction
h0x'QiCc
5 Applications of Two-Dimensional Wedge Diffraction
<}xgp[O
Chapter
i6FJG\d
235
zk@s#_3ct
5.1 Radiation from a Parallel Plate Waveguide with TEM Mode
vEE\{1
Radiation from a Parallel Plate Waveguide with TEM Mode
dBM{]@bZ
5.1
x'G_z_<V
Propagation, Terminated in an Infinite Ground Plane
6c>:h)?
Propagation, Terminated
L*rCUv `
in an Infinite Ground Plane
P=P']\`p+
235
r|z B?9Q
5.2 Antenna Gain
lkp$rJ#6
5.2 Antenna Gain
^IvQdVB
238
I~HA ad,k
Radiation from ah E-Plane Horn Antenna
Wj)v,v2&
5.3 Radiation from ah E-Plane
hVz]',
Hom Antenna
>CcDG
240
y(a>Y! dgU
5.3
j:8Pcx
/
`PLax@]2
I
L[5U(`q[
,
vwAhNw2-
5.4 Radiation from an H-Plane
k:mW ,s|a
5.4 Radiation from an H-Plane Horn Antenna r
F *U.cJ%
Hom Antenna
Aj/EaIq
244
44k8IYC*o
Radar Width of a Two-Dimensional Structure
IW}Wt{'m
5.5 Radar Width of a Two-Dimensional Structure
[tC=P&<
5.5
SgN?[r)
248
))X"bFP!3
1'
FUL'=Xo
Problems {
3 l j^I
Problems
EKuLt*a/
257
ZBH^0
References
1(i%nX<U
References
M4 }))
260
; Ob^@OM
Chapter 6 Three-Dimensional Wedge Diffraction and Comer Diffraction
~XXNzz]?
263
0a!|*Z
6 Three-Dimensional Wedge Diffraction and Corner Diffraction
FLG{1dS
Chapter
4B[uF/[
6.1 Introduction
J_<6;#
263
6Xn9$C)
6.1 Introduction
O"X7 DgbC
6.2 Edge-Fixed Coordinate System
|~v2~
265
y\9#"=+
6.2 Edge-Fixed Coordinate System
UsCaO<A
6.3 Three-Dimensional
"2tKh!?Q
UID Diffraction Coefficients
[_KOU2
268
Hkf]=kPy*
6.3 Three-Dimensional UTD Diffraction Coefficients
pOB<Bx5t
Examples of Three-Dimensional Wedge Diffraction
,CB E&g
6.4 Examples of Three-Dimensional Wedge Diffraction
&tiJ=;R1
274
p&2d&;Qo0
6.4
p9MJa[}V
6.5 Comer Diffraction
}:s.m8LC5n
288
A^|~>9
6.5 Corner Diffraction
ZBQ @S
6.5.1 Comer Diffraction from a Flat Plate
<&((vrfa
Corner Diffraction from a Flat plate
qjg Z
288
k O.iJcZg
6.5.1
&:}WfY!hX
6.5.2 Corner Diffraction from a Vertex
?5%o-hB|
in Which Wedges with
M`* BS
Corner Diffraction from a Vertex in Which Wedges with
ssH[\i
6.5.2
|v#rSVx
Arbitrary Wedge Angles Are Terminated
s?Gv/&
Arbitrary Wedge Angles Are Terminated
Da)_O JYE
298
B oiS
6.6 Alternative Forms of the Diffraction Coefficients
G~4G$YL*
Alternative Forms of the Diffraction Coefficients
I,Jb_)H&t
300
wq8&2(|Fc
6.6
F0kAQgUv
Problems
4)XB3$<
Problems
\nTV;@F
301
Zx: h)I
References
2P=~6(
References
"F Etl(
304
fgA-+y
Chapter 7 Equivalent Currents
+KTHZpp!c2
305
Bq-}BN?pz
Chapter
[4yw? U
7 Equivalent Currents
0q]0+o*%
7.1 Introduction
HRCnjem/v\
7.1 Introduction
4`o<e)c3
305
/*"pylm
Equivalent Currents for Edge Diffraction
u2[L^]|
7.2 Equivalent Currents for Edge Diffraction
Vkf{dHjW
306
~g@}A
7.2
I;UT;/E2
7.3 Radiation From Equivalent Currents
PH^Gjm
7.3 Radiation From Equivalent Currents
0xeY0!ux
312
N>)Db
Reflected Fields Using Equivalent Currents
e;|$nw-
7.4 Reflected Fields Using Equivalent Currents
^/}&z