登 录
註 冊
论坛
微波仿真网
注册
登录论坛可查看更多信息
微波仿真论坛
>
程序
>
Susan C. Hagness的1D/2D/3D FDTD(matlab)源码
发帖
回复
1
2
3
4
5
6
...28
下一页
到第
页
确认
88820
阅读
277
回复
[
资料共享
]
Susan C. Hagness的1D/2D/3D FDTD(matlab)源码
离线
gwzhao
方恨少
UID :17098
注册:
2008-08-24
登录:
2019-01-09
发帖:
1374
等级:
荣誉管理员
0楼
发表于: 2008-10-23 14:40:30
— 本帖被 tensor 从 资料库 移动到本区(2009-10-28) —
[post]%***********************************************************************
d./R;Z- I{
% 1-D FDTD code with simple radiation boundary conditions
! VT$U6
%***********************************************************************
{+lU 4u
%
|OLXb+7X
% Program author: Susan C. Hagness
f}yRTR GJv
% Department of Electrical and Computer Engineering
Tv#d>ZSD
% University of Wisconsin-Madison
XVNJK-B
% 1415 Engineering Drive
q]1p Q)\'p
% Madison, WI 53706-1691
e#hg,I
% 608-265-5739
1L`V{\_0s
%
hagness@engr.wisc.edu
mx)!] B"
%
6D| F1UFU
% Date of this version: February 2000
?$`kT..j,u
%
E,d<F{=8,o
% This MATLAB M-file implements the finite-difference time-domain
=R:O`qdC4e
% solution of Maxwell's curl equations over a one-dimensional space
GG%;~4#2
% lattice comprised of uniform grid cells.
<zpxodM@T
%
53hX%{3
% To illustrate the algorithm, a sinusoidal wave (1GHz) propagating
uG -+&MU?
% in a nonpermeable lossy medium (epsr=1.0, sigma=5.0e-3 S/m) is
'9QEG/v
% modeled. The simplified finite difference system for nonpermeable
R?1Z[N
% media (discussed in Section 3.6.6 of the text) is implemented.
v{$?Ow T/u
%
qUfoEpW2=6
% The grid resolution (dx = 1.5 cm) is chosen to provide 20
fTpG>*{p
% samples per wavelength. The Courant factor S=c*dt/dx is set to
G+fo'ThG
% the stability limit: S=1. In 1-D, this is the "magic time step."
^U?Ac=
%
3*Q=)}
% The computational domain is truncated using the simplest radiation
F=Xb_Gd`
% boundary condition for wave propagation in free space:
^zTe9:hz/\
%
$%$zZJ@/
% Ez(imax,n+1) = Ez(imax-1,n)
8AW}7.<5
%
J#Q>dC7
% To execute this M-file, type "fdtd1D" at the MATLAB prompt.
Zb_A(mnzh
% This M-file displays the FDTD-computed Ez and Hy fields at every
vw>(JCR
% time step, and records those frames in a movie matrix, M, which is
|*48J1:1y
% played at the end of the simulation using the "movie" command.
i+(>w'=m
%
}bRn&)e
%***********************************************************************
zf8SpQ2~
_#H d2h
clear
GPni%P#a@0
aA$\iFYA
%***********************************************************************
V0D&bN*
% Fundamental constants
~rb]u Ny-
%***********************************************************************
+8xT}mX
/*;a6S8q
cc=2.99792458e8; %speed of light in free space
GH':Yk
muz=4.0*pi*1.0e-7; %permeability of free space
4"|3pMr
epsz=1.0/(cc*cc*muz); %permittivity of free space
q0q-Coh>
uhj]le!
freq=1.0e+9; %frequency of source excitation
<}RD]Sc$1
lambda=cc/freq; %wavelength of source excitation
?#a&eW
omega=2.0*pi*freq;
aoz+T h3
|(l]Xr&O
%***********************************************************************
4Y'Ne2M{
% Grid parameters
(Zx--2lc
%***********************************************************************
j|8!gW
bp/l~h.7W
ie=200; %number of grid cells in x-direction
<r <{4\%}
v6G1y[Wl
ib=ie+1;
v5@4|u3ds
/&\V6=jA1
dx=lambda/20.0; %space increment of 1-D lattice
;1yF[<a
dt=dx/cc; %time step
#9s)f R
omegadt=omega*dt;
1?w=v|b:P)
V5-!w0{
nmax=round(12.0e-9/dt); %total number of time steps
'DXT7|Df
]gX8z#*k
%***********************************************************************
2!LDrvPP
% Material parameters
KaMg[G
%***********************************************************************
p*<I_QM!
#qk=R7"Q
eps=1.0;
P(yLRc
sig=5.0e-3;
B#hvw'}
>VZxDJ$R
%***********************************************************************
"c} en[
% Updating coefficients for space region with nonpermeable media
EZ>(}
%***********************************************************************
6p@[U>`
/JRZ?/<1
scfact=dt/muz/dx;
RSj8T<
Ohgu*5!o
ca=(1.0-(dt*sig)/(2.0*epsz*eps))/(1.0+(dt*sig)/(2.0*epsz*eps));
SFh<>J^ 0a
cb=scfact*(dt/epsz/eps/dx)/(1.0+(dt*sig)/(2.0*epsz*eps));
e}-fGtFx
TDZ==<C
%***********************************************************************
oj.J;[-
% Field arrays
94O\M RQ*
%***********************************************************************
iVnMn1h
`%~}p7Zu
ez(1:ib)=0.0;
8.jf6
hy(1:ie)=0.0;
Ohj^Z&j
BPkL3Ev1V
%***********************************************************************
Z&?4<-@6\p
% Movie initialization
LmyaC2
%***********************************************************************
h3.CvPYy1
fe<7D\Sp@
x=linspace(dx,ie*dx,ie);
Z #
o"0~
subplot(2,1,1),plot(x,ez(1:ie)/scfact,'r'),axis([0 3 -1 1]);
\:@7)(p\;
ylabel('EZ');
~tTn7[!
L_9uwua.B~
subplot(2,1,2),plot(x,hy,'b'),axis([0 3 -3.0e-3 3.0e-3]);
(e5Z^9X
xlabel('x (meters)');ylabel('HY');
";`jS&"=
FZ%h7Oe
rect=get(gcf,'Position');
,_H H8[&
rect(1:2)=[0 0];
ah<p_qe9|
ugXDnM[S%
M=moviein(nmax/2,gcf,rect);
4".I*ij
q2F`q. j
%***********************************************************************
Rs{8vV
% BEGIN TIME-STEPPING LOOP
\z6UWZ
%***********************************************************************
.7 )oWd!
{S+?n[1r\
for n=1:nmax
%'g)MK!e
&/Gn!J;1
%***********************************************************************
LH}9&FfjU
% Update electric fields
F{QOu0$cA4
%***********************************************************************
?fP3R':s
XPf{R619
ez(1)=scfact*sin(omegadt*n);
rSt5@f?
_1Rw~}O
rbc=ez(ie);
CG@Fn\J
ez(2:ie)=ca*ez(2:ie)+cb*(hy(2:ie)-hy(1:ie-1));
8a@k6OZ
ez(ib)=rbc;
#hn
Z5oDj|&l}
%***********************************************************************
_#v"sGmN
% Update magnetic fields
K"t?
%***********************************************************************
Wtw,YFT
j&/+/s9N
hy(1:ie)=hy(1:ie)+ez(2:ib)-ez(1:ie);
#J3}H
Eo^m; p5
%***********************************************************************
-z. wAp
% Visualize fields
]=ApYg7!
%*********** ..
Hmm0H6&u
zJ(DO>,p&
未注册仅能浏览
部分内容
,查看
全部内容及附件
请先
登录
或
注册
共
3
条评分
,
rf币
+11
,
技术分
+1
chenjiabao1989
rf币
+10
十分期待您分享下一贴!
2014-09-29
casey
rf币
+1
有自己的观点
2008-10-23
casey
技术分
+1
当时加错了,补上
2008-10-23
逆流而上
离线
gwzhao
方恨少
UID :17098
注册:
2008-08-24
登录:
2019-01-09
发帖:
1374
等级:
荣誉管理员
1楼
发表于: 2008-10-23 14:40:53
%***********************************************************************
|Yi_|']#
% 2-D FDTD TE code with PML absorbing boundary conditions
f_. 0 uM
%***********************************************************************
r,GgMk
%
_tnoq;X[
% Program author: Susan C. Hagness
BL\H@D
% Department of Electrical and Computer Engineering
Nqj5, 9*c
% University of Wisconsin-Madison
Oj7).U0;#
% 1415 Engineering Drive
c8o2* C$
% Madison, WI 53706-1691
8(-N;<Ef2
% 608-265-5739
;l@Ge`&u
%
hagness@engr.wisc.edu
`P*PCiZos
%
v +?'/Q%
% Date of this version: February 2000
bg*@N
%
GkdxwuRw
% This MATLAB M-file implements the finite-difference time-domain
G|UeR=/
% solution of Maxwell's curl equations over a two-dimensional
4_ZH Y?VRd
% Cartesian space lattice comprised of uniform square grid cells.
pf&SIG
%
1=jwJv.^/
% To illustrate the algorithm, a 6-cm-diameter metal cylindrical
X'7MW? q@
% scatterer in free space is modeled. The source excitation is
V67<Ky>
% a Gaussian pulse with a carrier frequency of 5 GHz.
;Z&w"oSJ
%
&:=[\Ws R
% The grid resolution (dx = 3 mm) was chosen to provide 20 samples
1L_(n
% per wavelength at the center frequency of the pulse (which in turn
-wnBdL
% provides approximately 10 samples per wavelength at the high end
V:8{MO(C\
% of the excitation spectrum, around 10 GHz).
*Y ?&N2@c
%
2 3A)^j
% The computational domain is truncated using the perfectly matched
n=h!V$X
% layer (PML) absorbing boundary conditions. The formulation used
AT"!Ys|
% in this code is based on the original split-field Berenger PML. The
%/K;!'7
% PML regions are labeled as shown in the following diagram:
S^SF!k=
%
C7MCMM|S
% ----------------------------------------------
M9(Kxux#
% | | BACK PML | |
XiyL563gh
% ----------------------------------------------
HwBJUr91]
% |L | /| R|
s#(<zBZ9p#
% |E | (ib,jb) | I|
[g lhru=+
% |F | | G|
tHH @[E+h
% |T | | H|
)dRBI)P
% | | MAIN GRID | T|
chU,));F
% |P | | |
};~I#X
% |M | | P|
pxQh;w
% |L | (1,1) | M|
%wmbFj}
% | |/ | L|
O6\t_.
% ----------------------------------------------
\r\wqz7
% | | FRONT PML | |
11-?M
% ----------------------------------------------
q{Gf@
%
4~0@(3
% To execute this M-file, type "fdtd2D" at the MATLAB prompt.
kNUNh[
% This M-file displays the FDTD-computed Ex, Ey, and Hz fields at
aN"dk-eK
% every 4th time step, and records those frames in a movie matrix,
JjBlje
% M, which is played at the end of the simulation using the "movie"
$w! v
% command.
dYp} R>+
%
IU rGJ#}O
%***********************************************************************
Z+S1e~~
fSm|anuKZe
clear
}vX/55
NKu*kL}W=
%***********************************************************************
frbeCBP&)
% Fundamental constants
k{+Gv}Y
%***********************************************************************
e:iqv?2t
J<ZG&m362p
cc=2.99792458e8; %speed of light in free space
~qb-uT\(99
muz=4.0*pi*1.0e-7; %permeability of free space
vb]H$@0
epsz=1.0/(cc*cc*muz); %permittivity of free space
t",b.vki\z
|\h<!xR
freq=5.0e+9; %center frequency of source excitation
,mD{4 >7
lambda=cc/freq; %center wavelength of source excitation
8G_KbS
omega=2.0*pi*freq;
I!g+K
udX!R^8jE
%***********************************************************************
S(5&%}QFQ
% Grid parameters
(L7%V !
%***********************************************************************
zWq&HBs
2!6-+]tC
ie=100; %number of grid cells in x-direction
k< g
je=50; %number of grid cells in y-direction
C,dRdEB>
0d #jiG
ib=ie+1;
M{`uI8vD
jb=je+1;
7j{63d`2
?lQ-HO Aw
is=15; %location of z-directed hard source
{'q(a4
js=je/2; %location of z-directed hard source
#9@UzfZAwT
a^Lo;kHY
dx=3.0e-3; %space increment of square lattice
hXP'NS`iv
dt=dx/(2.0*cc); %time step
Vg8c}>7
Hu7WU;w
nmax=300; %total number of time steps
~&Y%yN^
[O^mG 9
iebc=8; %thickness of left and right PML region
"I^pb.3
jebc=8; %thickness of front and back PML region
"5$2b>_UE
rmax=0.00001;
K}Rq<zW
orderbc=2;
iVf8M$!m
ibbc=iebc+1;
9':MD0P/M
jbbc=jebc+1;
#w]@yL]|is
iefbc=ie+2*iebc;
FK`M+ j
jefbc=je+2*jebc;
"P8cgj C
ibfbc=iefbc+1;
&l